
CS

COC251

B526376

Flying, Autonomous WiFi

by

Gareth J. Nunns

Supervisor: Dr P. Tso

Department of Computer Science

Loughborough University

May/June 2018

Abstract

This report covers the research, steps necessary and an initial proof of con-

cept, for producing a flying drone which dynamically positions itself to provide

the best WiFi signal to the users connected. This technology could be employed

at outdoor gatherings, search and rescue efforts or in flooded areas.

In this report an interactive functional prototype is developed using WebGL,

as well as a simplified algorithm on a constructed drone. This drone is controlled

by a Raspberry Pi, to which users can connect via the WiFi access point it

creates and allows the operator to retrieve a web dashboard, where the key

diagnostics and controls for the aircraft are found.

The users’ positions are localised by trilateration from the Received Signal

Strength (RSS) values from the connected devices. Using these values, the

drone aims to maximise the WiFi signal provided to all users. From testing of

the drone, flight controlled by the Pi was achieved and a location was calculated

for the user, allowing for future work to build on this.

Acknowledgements

I wish to acknowledge my project supervisor, Posco Tso, for his guidance and

feedback during the project. Many thanks to my father for supporting me

throughout the project, especially with proof-reading, altimeter measurements

and soldering. Also a special thank you to Fraser Stockley for proof-reading and

filming aspects of the project.

Index terms— Autonomous, Raspberry Pi, Drone, Trilateration, Received

Signal Strength, WiFi

Contents

1 Introduction 1

1.1 Scope . 1

1.1.1 Purpose . 1

1.1.2 Background . 1

1.1.3 Applications . 2

1.2 Motivation . 2

1.3 Aims . 2

1.4 Objectives . 3

1.5 Constraints . 4

1.5.1 Time . 4

1.5.2 Cost . 4

1.6 Report Outline . 4

2 State of the Art 6

2.1 Basic Definitions . 6

2.1.1 Drone . 6

2.1.2 Raspberry Pi . 6

2.2 Drones as a Service . 6

2.3 Hardware . 8

2.3.1 Commercial Drone . 8

2.3.2 Constructing a Drone . 9

2.4 Software . 9

2.4.1 Localisation . 10

i

2.4.2 AP Signal Levels . 12

2.4.3 Mobility Prediction . 14

2.4.4 Location Optimisation . 15

2.4.5 Collision Avoidance . 16

2.5 Summary . 16

3 Methodology 17

3.1 Project Management . 17

3.1.1 Project Plan . 17

3.1.2 Software Development Life Cycle 18

3.1.3 MoSCoW . 18

3.2 Research Methodology . 19

4 Requirements 20

5 Design 23

5.1 WiFi Research . 23

5.1.1 Test Setup . 23

5.1.2 Logging . 25

5.1.3 Range Tests . 25

5.1.4 Directional Tests . 27

5.2 Drone Sensor Research . 33

5.2.1 Test Setup . 34

5.2.2 GPS Tests . 34

5.2.3 Altimeter Tests . 35

5.2.4 Compass Tests . 36

5.3 Algorithm . 36

5.3.1 General Principle . 36

5.3.2 States . 38

5.3.3 Finding the Optimal Location 40

5.4 Summary . 43

6 Implementation 45

ii

6.1 Prototype . 45

6.1.1 Technology . 45

6.1.2 Overview . 46

6.1.3 Simulating RSS . 48

6.1.4 Data Structures . 49

6.1.5 Findings . 50

6.2 Drone . 51

6.2.1 Components . 51

6.2.2 Build . 53

6.2.3 Configuring Components 55

6.2.4 Safety . 57

6.2.5 Pi Configuration . 58

6.3 Program . 60

6.3.1 Development Environment 60

6.3.2 Interacting with Flight Controller 61

6.3.3 Web Server . 62

6.3.4 Logging RSS . 68

6.3.5 Main Program . 70

6.4 Summary . 73

7 Testing 74

7.1 Test-Driven Development . 74

7.2 Flight Tests . 75

7.3 Summary . 77

8 Recommendations 78

8.1 Search Method . 78

8.2 Drone Fleet . 78

8.3 Drone Modifications . 79

8.4 Web Dashboard . 80

8.5 Flight Recorder . 81

8.6 Summary . 81

iii

9 Discussion 82

9.1 Constraints Evaluation . 82

9.2 Technical Evaluation . 83

9.3 Personal Development . 83

9.4 Summary . 84

10 Conclusion 85

10.1 Objectives Revisited . 85

10.1.1 Objective 1 . 85

10.1.2 Objective 2 . 86

10.1.3 Objective 3 . 86

10.1.4 Objective 4 . 86

10.1.5 Objective 5 . 86

10.1.6 Objective 6 . 87

10.1.7 Objective 7 . 87

10.2 Requirements Revisited . 87

10.3 Project Management . 90

10.4 Final Conclusion . 91

Glossary 93

Acronyms 94

Bibliography 95

iv

List of Algorithms

1 Logging RSS of connected devices 25

2 General algorithm for the drone 39

3 calculateOptimalPosition() . 44

v

List of Figures

1.1 Pitch, roll & yaw - from Nigel (2017) 4

2.1 A set of three figures: Figure 2.1a: Facebook Aquila - from In-

ternet.org (2016) Figure 2.1b: Project Loon - from Project Loon

(2014) Figure 2.1c: SpaceX’s Starlink - from Heathman (2018) . 8

2.2 Triangulation method - from Rozyyev et al. (2011) 10

2.3 Lateration method . 11

2.4 The relation between RSS and distance, using equation 2.4, where

A = −50 and varying the value for n 14

3.1 Initial project plan . 17

5.1 General setup used for measuring RSS from the Pi 23

5.2 The effect on the phone’s RSS received by the Pi, when varying

the distance of the phone . 26

5.3 The effect on the laptop’s RSS received by the Pi, when varying

the distance of the laptop . 27

5.4 Location of the WiFi antenna on the Pi in relation to the drone . 28

5.5 The effect of rotating the drone on the RSS received by the Pi

from a phone 5m away . 30

5.6 The effect of rotating the drone on the RSS received by the Pi

from a laptop 5m away . 30

5.7 The effect of rotating the drone on the RSS received by the Pi

from a phone 10m away . 31

5.8 The effect of rotating the drone on the RSS received by the Pi

from a laptop 10m away . 31

vi

5.9 The effect of rotating the drone on the RSS received by the Pi

from a phone 20m away . 32

5.10 The effect of rotating the drone on the RSS received by the Pi

from a laptop 20m away . 32

5.11 The effect of varying the distance on the RSS received by the Pi

(facing forward) from a phone, with 50 readings in each range,

logged 24/min . 33

5.12 The effect of varying the distance on the RSS received by the Pi

(facing forward) from a laptop, with 50 readings in each range,

logged 24/min . 33

5.13 GPS reported distance from the initial point when drone remains

static on the ground . 34

5.14 Altimeter readings taken from the barometric sensor on the flight

controller over time whilst varying altitude 35

5.15 Representation of the RSS from two devices when the drone

moves in the horizontal plane . 37

5.16 Representation of the RSS from two devices, with noise, when

the drone moves in the horizontal plane 38

6.1 Prototype in the starting search state (rendered in Google Chrome) 45

6.2 Prototype in the optimal state (rendered in Google Chrome) . . 47

6.3 Prototype in the searching state again after finding an estimate

for the user (rendered in Google Chrome) 47

6.4 Output of normalPDF(angleToUser,180,45) used in listing 6.1 49

6.5 Completed drone from above . 51

6.6 Completed drone from above, labelled 52

6.7 Completed drone from below, labelled 52

6.8 Construction of the drone’s frame 53

6.9 Direction of the motors and the pins they connect to 54

6.10 Connections to the flight controller on the drone 54

6.11 ublox u-center GUI . 56

6.12 MultiWiiConf GUI . 57

6.13 Development Environment: (left) Microsoft Visual Studio Code,

(right) Transmit . 61

vii

6.14 Drone dashboard . 64

6.15 Drone dashboard viewed on a mobile 64

6.16 Trilateration example, location computed by listing 6.15 72

7.1 Flight tests: Figure 7.1a: First flight test, Figure 7.1b: Test Setup

from above, Figure 7.1c: Test Setup, Figure 7.1d: Connecting

the battery, Figure 7.1e: Drone’s web dashboard, Figure 7.1f:

Configuring the drone, Figure 7.1g: Drone taking off, Figure 7.1h:

Drone in flight . 76

10.1 Updated project plan (10/1/18) 91

viii

List of Tables

4.1 Key Requirements . 22

5.1 Lines of best fit from figures 5.2 & 5.3 41

5.2 Lines of best fit from figures 5.2 & 5.3 in log10 42

10.1 Key Requirements, revisited . 90

ix

Program Listings

6.1 perceivedRSS function from prototype 48

6.2 RSS Classes (RSS & RSSLogItem) from prototype 49

6.3 /etc/hostapd/hostapd.conf file on the Pi 58

6.4 Key settings from /etc/dhcp/dhcpd.conf file on the Pi 59

6.5 /etc/network/interfaces file on the Pi 59

6.6 drone/start.sh file on the Pi . 60

6.7 /etc/hosts file on the development computer 60

6.8 Example of running the web server from drone/webServer.py 62

6.9 webStatus from drone/classes.py 65

6.10 webDeviceLogItem from drone/classes.py 66

6.11 Example throttle request to /api/v1/throttle 67

6.12 Constructors for RSS & RSSLogItem from drone/pidrone/classes.py . 68

6.13 Excerpt from RSSLogger.log() function in drone/pidrone/RSSLogger.

py . 69

6.14 squareSearch.trilateration() function in drone/pidrone/classes.py . 71

6.15 Example use of squareSearch.trilateration() function 72

7.1 Example unit test . 74

7.2 Output from running the classes test suite 75

x

Chapter 1

Introduction

1.1 Scope

1.1.1 Purpose

This report aims to summarise and extend current research into the viability

of an autonomous drone to provide the best WiFi signal to users below, pro-

ducing a proof of concept. This has real-world potential applications, such as:

search and rescue, concerts or generically the internet of things; furthermore,

the autonomous flight could be applied to package delivery or camera tracking,

to name a couple of examples.

1.1.2 Background

With the recent increase in drone popularity, due to lower prices & ease of

control (Liu et al. 2015), they have become more common-place. Furthermore,

with a greater demand for wireless networks (Soh & Kim 2003), this project

looks to address the growing need for wireless network in ad hoc, temporary

situations (EE 2017). Traditionally this is solved by installing semi-permanent

base-stations (Bicheno 2017), which are costly and are based on the foreseen

location of where users will be. Floreano & Wood (2015) predict the advent of

greater autonomy in the small drone market, under the premise that regulations

are lowered. This report looks to explore this emerging technology to solve the

demand for an internet connection in various situations.

1

1.1.3 Applications

This would be ideal for relief efforts in inhospitable areas, be it after flooding,

hurricanes or landslides, when there is no simple way to provide an internet

connection to those stranded. The drones would be a quickly deployable solution

that only require a single source of power; ideally this would be developed into

a node based solution which would mean a continuous service could be provided

and it would react to the movements of the users below.

For medium to large scale outdoor events, this works as a possible solution

to provide a network to those attending. Traditionally one would have to erect

multiple masts but this is a much more flexible product. It could be extended

to mobile networks as well.

More generically drone manufacturers will be interested in the methods used

and potential applications for aerial access points (APs). Whilst drones are

still an emerging market, consumers are yet to see the full capabilities of these

devices and companies will be looking for innovative solutions - at the core of

any solution there will always be a need to avoid obstacles through sensors.

Another audience will simply be drone enthusiasts interested in what is pos-

sible with their drone and the problems it can solve.

1.2 Motivation

The motivation of the project is to better current solutions and expand under-

standing of this field - dynamically moving the location of wireless APs to meet

the users needs hasn’t been explored in depth as previously it wasn’t feasible,

which is what makes the project intriguing.

On a personal level, it is interesting to learn and expand my knowledge of

the various aspects of this report, including drones, embedded systems, WiFi

technology and Python programming. It’s exciting to be on the forefront of a

new technology which could bring about improvement and change to the world,

providing a service where before it was less practical.

1.3 Aims

The aim of this project is to develop a drone controlled by a Raspberry Pi with a

wireless AP, so that it can fly autonomously to provide the best coverage to the

devices connected. The drone should be safe, with well documented code so that

2

it is easy to replicate and continue development. The hope is that this project

will be further progressed in future years by either myself, or other students.

1.4 Objectives

The objectives of the project will be:

1. Simple flight controlled by the Pi - pitch, roll, yaw (figure 1.1) and altitude

commands sent from the Pi which result in the correct movement of the

drone

2. Creating a project that is accessible for others to progress - clear, concise

code and a user interface that explains what the drone is doing.

3. Maintaining horizontal position - naturally a drone won’t hover in a static

position, due to the wind or differences in the motors: commonly this is

achieved through the use of Global Positioning System (GPS) and cor-

recting for these problems.

4. Maintaining vertical position - similar to the maintaining horizontal po-

sition issue, this can be solved by GPS (to a limited extent), radar or

barometer.

5. Forward obstacle avoidance - sense an object in front of the drone and

take action to avoid a collision. This may be beyond the scope and time

frame of this project.

6. A functioning wireless access point with the ability to measure connected

devices signal strength - allowing the drone to make a decision of where

to move to deliver the best signal.

7. Movement based on the proximity to users connected to the access point,

involving ascertaining the location of the connected users from trilatera-

tion and then providing the best signal.

3

Figure 1.1: Pitch, roll & yaw - from Nigel (2017)

1.5 Constraints

The main constraints for this project were identified as cost and time. These

constraints guided the planning of the project, influencing the breadth of what

is covered.

1.5.1 Time

The project submission deadline is 30th April 2018 and is not flexible. This

limits the total scope of the project: not all of the avenues of this project can

be explored in this time frame, but this report looks to provide a founding for

knowledge on the topic and show a proof of concept.

1.5.2 Cost

The main expenses of the drone components were approved and paid by Lough-

borough University. Other small costs were paid for by myself, including the

microSD card for the Pi, the battery charger and LiPo-safe bag for batteries, as

well as other tools which will be used for future projects.

1.6 Report Outline

This section summarises the contents of each chapter.

Chapter 1, the introduction, gives an overview of why the project has been

4

undertaken and what it aims to achieve. The aims & objectives provide some

metrics for the project and are further explored in the State of the Art, chapter

2.

The literature review is essential to create a firm foundation for advancing

knowledge and summarises similar research to this report, with the way it affects

the project (Webster & Watson 2002). State of the Art, chapter 2, covers some

of the related hardware and software concepts used in the project, drawing

from various up-to-date sources, including conference proceedings, websites and

articles.

Chapter 3 provides a brief summary of the methodology employed whilst

completing tasks, such as the research, design and project management, con-

taining steps used to carry out the project.

The requirements, chapter 4, give SMART points of reference for the project,

which can be drawn upon for the design of the project. These are ranked using

the MoSCoW system to give input to the Test-Driven Development (TDD).

Chapter 5, Design, draws upon the state of the art and the requirements,

chapters 2 & 4 respectively, to formulate the main flight algorithm, consider-

ing how the drone will fly in response to the Received Signal Strength from

users. This helps ensure the “must-have” features from the requirements are

incorporated.

Chapter 6 covers the prototyping, setup of the Raspberry Pi & Flight Con-

troller (FC) and the programming of the Pi, along with any issues that occurred.

Where possible, tests were written prior to or during coding as part of the

Test-Driven Development process, however chapter 7 covers a more comprehen-

sive test plan, as well as outlining physical tests due to the outdoor nature of

this project. These relate directly to the requirements, where feasible.

Chapter 8 encompasses any issues that were encountered within the various

sections of the project, e.g. the design, implementation and testing. Further-

more it covers future work on the subject that could bring about new under-

standing and benefits to users of a similar system.

The discussion in chapter 9 reconsiders the project’s constraints and methods

used, reflecting upon the lessons learnt from the project.

The conclusion, chapter 10, ties the report together, evaluating the success

of the objectives, coverage of the requirements, and deviations from the work

plan, taking into consideration the constraints.

5

Chapter 2

State of the Art

2.1 Basic Definitions

2.1.1 Drone

Simply put:

“A drone, in a technological context, is an unmanned aircraft. [...] The

aircrafts may be remotely controlled or can fly autonomously through software-

controlled flight plans in their embedded systems working in conjunction with

onboard sensors and GPS” (Rouse et al. 2016)

2.1.2 Raspberry Pi

The Raspberry Pi is an Arm based computer, which typically runs a distribution

of the Linux operating system (Cellan-Jones 2011). It is an immensely popular

device, now in it’s third large iteration (Miller 2017), gaining its popularity from

the low price and small size, only slightly larger than a credit card (Hern 2016).

The combination of being lightweight, computationally powerful and ease of

deployment, make it a good fit for this project (Lu et al. 2017).

2.2 Drones as a Service

Drones as a commercial service have increased in recent years and this increase

is forecast to continue (Joshi 2017).

The most widely popularised application of drones currently is aerial cine-

6

matography (Torres-González et al. 2017). Initially, it was more independent

film that made use of drones as most hobbyist drones have a gimbal-stabilised

high definition camera (Howell 2015, Rao et al. 2016), however larger production

companies have since embraced them for use in feature films (Thomas 2015).

This shift from the use of helicopters is largely down to much lower costs; fur-

thermore, there are much shorter setup times, greater safety, and in general

they are more efficient for productions (Kulkarni 2017).

Another application is crop monitoring (Valente et al. 2011) and spraying,

which DJI (2017a) have been at the forefront of. The benefits of using drones

include that they save a lot of time, compared to farmers walking the acres on

foot, plus the health of the crops can be ensured by spraying the correct volume

of pesticide and monitoring the crop colour (Tiwari & Dixit 2015). Similarly to

this project, drones are able to provide a service in a remote location to replace

expensive traditional methods.

Internet connectivity to the masses is being pursued by many, including by

Facebook and Google, however they are able to avoid the traditional, wired

Western telecoms model to develop more innovative methods (Edwards 2015):

• Facebook, through its charitable internet.org project, is building a fleet of

Aquila drones - lightweight, unmanned flying wings which will fly slowly at

60,000 - 90,000 feet for up to three months, using efficient electric motors

powered by batteries fed by large solar panels on the wing (Internet.org

2016, Cellan-Jones 2016). These drones will provide internet by commu-

nicating to base stations via infrared lasers. Figure 2.1a

• Project Loon by X (formerly Google X and a subsidiary of Alphabet) are

developing solar-powered balloons that will float at approximately 65,000

feet for more than three months, with data transmitted from base stations

and received by users on their LTE devices in the 3000 miles2 coverage

area (Project Loon 2017). The clusters of balloons will maintain their

position by ascending or descending to take advantage of different wind

directions (Waters 2017). Figure 2.1b

• Space X’s Starlink plan is to deploy a network of 800 miniature internet

satellites, orbiting 680 miles above the earth to provide a service similar

to broadband; however launches have only recently begun and not all of

the ground technologies have been confirmed (Pasztor 2018). Users will

access the internet via satellite dishes, with Elon Musk aiming for fibre

speeds (Meyer 2018, Pasztor 2018). Figure 2.1c

7

(a) (b) (c)

Figure 2.1: A set of three figures:
Figure 2.1a: Facebook Aquila - from Internet.org (2016)
Figure 2.1b: Project Loon - from Project Loon (2014)

Figure 2.1c: SpaceX’s Starlink - from Heathman (2018)

These projects, in comparison to this one, are focused much more on pro-

viding connectivity to much larger areas, where the time taken to set up and

deploy these solutions is much greater - especially putting satellites in space.

2.3 Hardware

There are many potential options for which drone to use for this project: an

off-the-shelf commercially produced drone or a custom-built drone from a large

selection of parts available to hobbyists and manufacturers.

2.3.1 Commercial Drone

The research started with commercial drones, looking at the Parrot AR Drone

2.0 (Parrot 2017), however to use this drone for the project would mean de-

constructing it and heavily modifying it (Ogden 2012). Also assessed was the

PiCopter (PiCopter 2017), which was promising although the project is still

in its infancy with little to no distribution chain, also has difficulties adding a

distance sensor.

At the time of research, there did not appear to be a drone on the market

that was, or could be, controlled by a Raspberry Pi that:

• was open-source

• had a WiFi chip that could be accessed

• had (or could be modified to add) a proximity sensor for obstacle avoidance

8

2.3.2 Constructing a Drone

There are many options for a building a drone which many have summarised, a

helpful guide is provided by Rufus (2016). This offers plenty of advice including

opting for a Ready to Fly (RTF) kit. As the background of this project is not

from an electrical engineering perspective, nor do I have extensive experience

in this field, I heeded this advice, exploring ARF (a.k.a. ATF - Almost-Ready-

to-Fly/Assemble-to-Fly) kits. The benefit being that one doesn’t have to find

individual components (motors, Electronic Speed Controllers (ESCs), frame)

that match each other.

Both Rufus (2016) and Gonzalez (2017) highly recommend a quadcopter

style frame for first time builders and it is the most common style. Notably

with quadcopters, if one rotor fails, the others will not be able to compensate

for this, which means the drone will crash Rufus (2016). If this project were to be

used above crowds, such as at large outdoor events, a hexacopter or octocopter

would be beneficial for safety, however to reduce weight, battery use and costs,

these will not be considered for this project, focusing instead on quadcopter

ARF kits.

Rufus (2016) recommends a frame “size range of 400mm to 500mm” for

beginners and as DJI is a leader in drone technology (Glaser 2017), a DJI

Flame Wheel F450 ARF Kit has been used for this project. This includes the

frame itself, motors, ESCs and propellers; furthermore, it has space to house

the Pi, battery and other peripherals.

All that is left is to control the motors from the Pi: this is handled by

the Flight Controller (FC), which sends the speed controls to the ESCs; they

commonly also contain other useful peripherals like barometers and compasses

(le Bon 2015). It is possible to control a motor through an ESC with a Raspberry

Pi (Ahmed 2017), however there are plenty of dangers with attempting this and

it is already a solved problem. A MultiWii controller was chosen for this project

as it’s a well-known controller and has open-source resources for controlling it

(le Bon 2015, MultiWii 2014b).

2.4 Software

In order to localise users connected to the drone’s access point and provide the

best WiFi signal to them, the following methods were researched.

9

2.4.1 Localisation

Rozyyev et al. (2011) defines triangulation as such:

“Triangulation does not require knowing the distance between the target

node and the neighboring nodes to calculate the distance. It measures the

angles between the intersection lines of the target and the reference nodes. The

distance can be calculated with those angles. Triangulation only requires two

reference points to calculate the location of the target.” (shown in figure 2.2)

Figure 2.2: Triangulation method - from Rozyyev et al. (2011)

This of course requires knowledge of the angle from the drone to the user.

The Pi has a single WiFi antenna (B. Benchoff 2016), however there may be some

directionality to it - there is little documentation on this and it was necessary

to perform tests, chapter 5. If it were very directional, the drone would simply

rotate in two locations and, using trivial geometry, pinpoint the user.

If this is not feasible, another method is trilateration, defined as:

“Lateration algorithms can locate a target by using the distance information

between the target and several reference points [...]. The distance between the

target and a reference point can be calculated either by measuring the time

delay between the target and the receiver and then converting it into a distance

value, or by measuring the RSS values at the target and then converting them

into distance values.” (Dag & Arsan 2017, p. 116) (shown in figure 2.3)

10

Figure 2.3: Lateration method

The formula for lateration is based on Pythagoras’ theorem (Dag & Arsan

2017, p. 118) and can be generically expressed as equation 2.1 (from Dag &

Arsan (2017), equation 11), where N is the number of readings; xi, yi & ri are

the X & Y coordinates and distance away from drone at point i respectively;

similarly x & y are the two unknowns: the X & Y coordinates of the device

being localised - the same notation as figure 2.3.



r21 − r22 + x22 + y22 − x21 − y21

r21 − r23 + x23 + y23 − x21 − y21

. . .

r21 − r2N + x2N + y2N − x21 − y21


=



2 · (x2 − x1) 2 · (y2 − y1)

2 · (x3 − x1) 2 · (y3 − y1)

.

2 · (xN − x1) 2 · (yN − y1)



x
y

 (2.1)

For example, applying equation 2.1 to figure 2.3, where there are four read-

ings (N = 4), gives equation 2.2.

11


r21 − r22 + x22 + y22 − x21 − y21

r21 − r23 + x23 + y23 − x21 − y21

r21 − r24 + x24 + y24 − x21 − y21

 =


2 · (x2 − x1) 2 · (y2 − y1)

2 · (x3 − x1) 2 · (y3 − y1)

2 · (x4 − x1) 2 · (y4 − y1)


x
y

 (2.2)

In equation 2.1, let C =



2 · (x2 − x1) 2 · (y2 − y1)

2 · (x3 − x1) 2 · (y3 − y1)

.

2 · (xN − x1) 2 · (yN − y1)



and let D =



r21 − r22 + x22 + y22 − x21 − y21

r21 − r23 + x23 + y23 − x21 − y21

. . .

r21 − r2N + x2N + y2N − x21 − y21


Using these substitutions, equation 2.1 (and equation 2.2) can be rearranged

to give a unique solution, as shown in equation 2.3 (Dag & Arsan 2017, p.119).

D = C

x
y

⇔
x
y

 = (CT · C)−1CTD (2.3)

This provides a means to localise the user from a number of readings taken

by the drone.

2.4.2 AP Signal Levels

In order to determine the location of the connected devices beneath the drone on

the ground, the Pi, behaving as an AP, must be able to establish their relative

distances away (Lim et al. 2007).

Received Signal Strength (RSS) is a measurement of the power of the received

signal at a device (Benkic et al. 2008), which is typically measured between

12

0dBm and -100dBm (Dag & Arsan 2017, p.119); for WiFi, typical values range

between -30dBm to -90dBm (Metageek 2017). Elnahrawy et al. (2004) found

that one could expect a median error of approximately 10ft for localising WiFi

signal, with a good algorithm and much sampling. This could provide a metric

to use for trilateration, similar to the use of time of arrival with mobile phones

and GPS (Zhao 2000), as shown in figure 2.3.

RSS is the simplest and cheapest method for localisation, compared to sys-

tems based off the precise time of arrival of the signal or the angle at which

the signal arrives to an array of antennas (Tahat et al. 2016, p. 6657). With a

large fleet of these drones, it may be possible to use time of arrival in conjunc-

tion with a more expensive synchronised clock system, which is outside of the

scope of this project. Conversely, RSS values could be stored inexpensively in a

shared database between the drones. With respect to the disadvantages of RSS

discussed by Tahat et al. (2016), for this application, there will most likely be

maintained line-of-sight between the client and drone, furthermore only a low

level of accuracy is required, such as within approximately 10 metres. It was

necessary to test the fidelity and reliability of the the WiFi antenna on the Pi,

chapter 5, as there is a lack of literature on this topic.

Equation 2.4 illustrates the relationship between RSS, S, and distance from

the access point, r, where A is the RSS at a distance of 1m and n is the path

loss exponent (Xu et al. 2010).

r = 10
S−A
−10n (2.4)

The value for A will depend on the strength of the transmitter in the de-

vice and hence may well vary between different devices (tested in chapter 5),

nonetheless, with a large data set in laboratory conditions it is possible to ap-

proximate the value for A (Dag & Arsan 2017, p.120). However, as that would

not be possible with the drone in flight and with a user at an unknown location,

a simpler heuristic could use a series of readings to approximate the value for

A - e.g. using the minimum value or an average of all values.

The path loss exponent refers to attenuation in power of an electromagnetic

wave as it disperses, where 2 is in free space and 4 - 6 is obstructed in a building

(Mathuranathan 2013); this is affected by a range of factors, including reflection,

diffraction, shadowing, etc. (Miranda et al. 2013). As the drone is likely to be

in a similar open-air setting for most uses with line-of-sight to the users, one

would expect a value close to 2 for the majority of flights - the true value can

be ascertained through testing, chapter 5.

13

−90 −80 −70 −60 −50 −40 −30

10

20

30

40

50

RSS (dBm)

D
is

ta
n

ce
fr

om
th

e
d

ro
n

e
(m

)

n = 2
n = 3
n = 4

Figure 2.4: The relation between RSS and distance, using equation 2.4, where
A = −50 and varying the value for n

Figure 2.4 shows the effect of changing the path loss exponent on the RSS at

typical distances. If incorrectly approximated, the distance will be magnitudes

away from their true value - plotting test data was essential, chapter 5. The

path loss exponent determines the range of the WiFi, as -80dBm is a minimum

for basic connectivity (Metageek 2017).

The caveat is that when referring to RSS in the sense of WiFi, it is typically

a client-side measurement and for this project it needs to be monitored on the

server side (at the AP), however it is possible to obtain on the server side (Lim

et al. 2007, p. 619).

Vasisht et al. (2016) has developed Chronos, a means to localise WiFi users

with decimetre accuracy by measuring the time of flight of packets to the mul-

tiple antennas of a single WiFi chip. This was applied to an indoor drone using

motion capture to track the precise movement of the drone and maintained a

steady distance away from the user (Vasisht et al. 2016, p. 175); however, this

has not been tested outdoors and may lack accuracy in flight and localisation.

This relies on the MIMO antenna (Multiple Input Multiple Output) which un-

fortunately the Pi does not have built in (B. Benchoff 2016).

2.4.3 Mobility Prediction

As the users on the ground will not be static, it will be important to predict

their movements. “Location prediction is the process of predicting a roaming

14

user’s next location given their current location and prior movement history.”

There are three main options for this (Song et al. 2006, p. 2):

1. Store the transmitter which a user is connected to and when they connect

to a new transmitter, so that their path through the transmitter nodes

can be predicted, which is commonly used for mobile roaming (Liu et al.

1998). For the proof of concept presented in this research, there will be

one, possibly two wireless access points, and hence this method can not be

explored fully - however at a large music festival this would be important

to deploy.

2. Periodically store the location and velocity of each user, so as to predict

their future movements (Aljadhai & Znati 2001, p. 3). These values can be

obtained in various ways, including signal-triangulation - with a drone this

traditional concept (Lim et al. 2007) can be turned on its head, by moving

the drone in a triangular path in the horizontal plane and measuring the

varying signal levels to obtain the user’s location, e.g. the four sites in

figure 2.3 could be the reading taken by the drone on its flight path.

Alternatively, one could use GPS data from the user’s device (Song et al.

2006, p. 2): this would involve producing a client-side application to send

the locations to the drone - this would mean all connected devices must

have a GPS chip, uncommon in laptops, hence making it less applicable

to this project.

3. Using high-level techniques, such as a map (Soh & Kim 2004) or an office

layout (Lu & Bharghavan 1996) to predict users’ movements along pre-

defined paths. This is not as relevant to my area of research because the

drone is likely to be used in situations such as earthquake relief or large

outdoor events where these paths are not currently in use.

2.4.4 Location Optimisation

There is a large field of network planning, covering the best place for transmitter

locations (Wu et al. 2005). However, there are many challenges locating a single

user so this will be an interesting area of future work. A simple heuristic would

be to average the predicted positions of the users, shown in equation 2.5, where

(xi, yi) is the predicted location of user i and there are n users.

15

optimal location =

 1

n

n∑
i=1

xi
,

1

n

n∑
i=1

yi

 (2.5)

It will be important to place limits on where the drone can fly; for example,

at a festival, the drone should not stray away from the land on which the festival

is taking place and only be considering users within that area.

2.4.5 Collision Avoidance

Before a collision is avoided, the obstacle must first be detected (Gageik et al.

2012). Gageik et al. (2015) state:

“Infrared (IR) sensors, like all optical sensors, fail under poor lighting con-

ditions such as smoke or fog and cannot detect diaphanous obstacles; contrary

to Ultrasonic (US) sensors, which do not pose such drawbacks. However US

sensors cannot detect sound absorbing surfaces like clothes or curtains properly.

US sensors are therefore not reliable to detect people or the available distance

from them, which is no challenge for IR sensors.”

Hence, as in the outdoors most objects the drone is likely to encounter will

be sound-reflective and may be translucent, the focus of this project will be on

Ultrasonic sensors.

For the purposes of this project, the drone will only be flying forwards in

the horizontal plane, so only a simple forward-facing sensor is required, similar

to the use by (Wagster & Rose 2012, p. 10), as opposed to the more complex

arrays employed by Gageik et al. (2012). In likeness to the way the DJI (2017b)

Return To Home Obstacle Check works, if an obstacle is detected the drone will

attempt to fly over/around it.

2.5 Summary

I have presented the state of the art in the field, covering drone usage in industry,

potential drones to use for the project and how users’ locations will be predicted,

including research towards all objectives. The information gathered in this

section guides the research and design presented in chapter 5, as well as the

requirements and implementation, chapters 4 & 6 respectively.

16

Chapter 3

Methodology

3.1 Project Management

3.1.1 Project Plan

Figure 3.1 shows the initial project plan drawn up at the start of the project,

which laid out at idealised plan, provisioning a fair amount of time to the key

aspects of the report: the development and report, with plenty of contingency.

The plan is revisited and discussed in chapter 10.

Figure 3.1: Initial project plan

17

3.1.2 Software Development Life Cycle

The waterfall is the traditional sequential model for software development, where

each phase of development is completed before another can proceed. It does not

suit this project as a change in requirements or a problem in one of the phases

would lead to a badly structured system, or reworking the previous sections

(Balaji 2012, p. 27).

The Agile development method is based around the idea of a quickly moving

team, where working software is delivered regularly (in weeks, as opposed to

months) - the benefit being that the customer can give continuous feedback

to ensure satisfaction (Balaji 2012, p. 28). The tasks that the team works on

are prioritised in the backlog as to what they will work on next (Highsmith &

Cockburn 2001, p. 121). As there is no customer in this project, the Agile model

is not well-suited to this project.

“The Test-Driven Development strategy requires writing automated tests

prior to developing functional code in small, rapid iterations” (Janzen & Saiedian

2005). These unit tests based off the requirements can then be rerun every time

a new version of the code is produced to ensure validity, which makes it ideal

for this project. Using Test-Driven Development (TDD) means that as long as

the test is designed correctly and the code successfully completes the tests, the

code is guaranteed to be correct; however, there is an onus on the developer to

know the purpose of the code before it is written.

3.1.3 MoSCoW

The MoSCOW technique is a means of prioritising requirements and is usually

defined as Brennan (2009):

• Must have: essential to the project and if it is not included the project

is deemed a failure.

• Should have: these requirements are still important to the project, how-

ever are not functionally required.

• Could have: will improve the project but are not necessary.

• Won’t have: least critical requirements that may not be feasible at this

time.

It is worth noting that there are other methods such as bubble-sort, 1-10

ranking & planning poker (Kukreja et al. 2012). As there are few requirements

18

(sub 300), a simple system is ideal and Kukreja et al. (2012) found through

survey that there is indifference between bucketed (must have, should have, etc.)

and ordinal (a ranked system). Therefore as MoSCoW is clear and unambiguous,

it will be used for this project to rank the requirements.

3.2 Research Methodology

The scope of the research in this project was to collect quantitative data, in

order to verify existing models and test the precision of sensors. This used

applied research to recognise the effect of one variable upon another (Rajasekar

et al. 2013). The techniques used and control measures taken are described in

chapter 5.

19

Chapter 4

Requirements

The key requirements of the system are detailed in table 4.1, prioritised using

the MoSCoW ranking system.

Priority Requirement Description

M.1 Must

have

A constructed drone

that is capable of flight

The project relies on a func-

tioning drone to lift the Pi act-

ing as an AP.

M.2 Must

have

Drone is controlled by

Pi

One of the foci of this project

is to control the drone with a

Pi. This covers the control of

pitch, roll, yaw and throttle.

M.3 Must

have

The drone maintains its

position in the horizon-

tal plane, with stable

pitch, roll and yaw

It is important that the craft

is stable throughout flight, so

should automatically correct

from the effects of the wind or

other external factors. To en-

sure accuracy of the trilatera-

tion, there should be an accu-

racy of +/- 3m in each axis.

M.4 Must

have

The drone maintains its

position in the vertical

axis, within +/- 1m

To ensure accuracy of the flight

commands and the trilatera-

tion.

20

Priority Requirement Description

M.5 Must

have

A means to force the

drone to land

For the purpose of safety and

to ensure the batteries do not

become over-exhausted.

M.6 Must

have

An emergency stop but-

ton which stops the ro-

tors spinning

For the purpose of safety: the

drone should stop within 2 sec-

onds of the command being

sent.

M.7 Must

have

Measuring of the bat-

tery level

Ensures the batteries are not

depleted to an unsafe level.

The operator should be made

aware clearly aware of this, ei-

ther visually or audibly.

M.8 Must

have

Pi acting as an AP For devices to be able to con-

nect to the drone.

M.9 Must

have

Log the Received Sig-

nal Strength (RSS) of

the devices connected

to the Pi’s AP

In order to trilaterate the loca-

tions.

M.10 Must

have

Trilaterate the users’ lo-

cations, based off the

RSS

In order to compute where the

best location is to provide the

best signal to all connected de-

vices.

M.11 Must

have

Self-documenting code,

which is efficient and

well-structured

This will benefit further devel-

opment of the project and aid

debugging.

S.1 Should

have

The drone should make

movements based on

the trilaterated location

of multiple connected

users

In order to provide the best sig-

nal to all connected devices.

21

Priority Requirement Description

C.1 Could

have

Predict the future lo-

cation of users, based

on the prior predictions

made

In order to provide the best sig-

nal to all connected devices.

W.1 Won’t

have

Obstacle avoidance, us-

ing US, IR or a similar

technology

To protect the drone and

nearby objects. This is beyond

the scope of this project and it

will be assumed that the drone

is in a clear space; nonetheless,

it still remains a desirable fea-

ture.

Table 4.1: Key Requirements

22

Chapter 5

Design

5.1 WiFi Research

The project relies upon estimating user locations from trilateration of Received

Signal Strength (RSS) values, chapter 2, hence it was necessary to record data on

the relation between distance and the Pi’s RSS of connected devices to provide

the basis for further decisions.

5.1.1 Test Setup

Figure 5.1: General setup used for measuring RSS from the Pi

Figure 5.1 shows the concept of the test setup: measurements on the floor

with one metre increments, where the drone, with the Pi attached to it, is

placed at one end and the laptop/phone moving away from the drone, along

the measurements. The maximum distance was 40m as this was considered to

be furthest away the drone would optimistically be from the user, in this proof

of concept. In order for the tests to be accurate, these variable factors were

23

considered:

• The same devices were used throughout, as even similar models may

have had stronger transmitters, more receptive receivers or had a different

RSS scaling. The devices used were:

– Pi: Raspberry Pi 3 Model B

– Laptop: Apple MacBook Pro (13-inch, Mid 2012)

– Phone: Apple iPhone 5 (64GB)

These devices were considered to be typical for those connecting. During

all of the tests where the laptop was involved, an SSH tunnel was running

to the drone in order to start/stop/monitor logging; this would have made

little difference.

• All of the research was performed at the same location - changing lo-

cation could result in greater reflection/absorption from the surrounding

environment. The location chosen was a remote, empty, outdoor car park

with a concrete/gravel surface, walled by hedges. This was chosen so that

markings could easily be made on the ground and there would be little

reflection from the area. Importantly, the test was not performed indoors,

as that is not the intended purpose for this project. The drone remained

directly on the floor in the same place (facing forward for all range tests)

- meaning the data may be slightly inaccurate as during flight it would be

clear in all directions.

• Similarly, all testing was recorded on the same day and where possible

recording comparable sets successively (e.g. when rotating the drone at

a fixed distance). The weather was fairly consistent throughout and of

course was not controllable - especially the sudden downpour after the

final test.

• The logging of the data was all performed internally on the Pi using the

same code throughout.

• During the tests to ensure consistency, safety and distance accuracy the

drone was not flying during the tests, however the other boards on the

drone were powered on - meaning there would be approximately the same

interference, if any.

• The Pi was set to a static WiFi channel, however there were a couple

of other networks in range which may automatically switch to the channel

24

with the least interference so may have affected the results differently.

They were measured to be below -70dBm with the laptop so would have

most likely caused little interference.

• All devices were left connected to the drone for at least a minute to ensure

any initial handshaking protocols were avoided and did not affect the

results.

• I attempted to minimise the human element: the devices were all held

in a similar fashion and stepping between the markers was kept as uniform

as practicable.

5.1.2 Logging

The general algorithm used for logging the RSS is outlined in algorithm 1. It

was necessary to ping the devices each time to refresh the RSS. The algorithm

was implemented using native Unix commands and logged to CSV with Python.

Algorithm 1: Logging RSS of connected devices

1 while true do
2 devices[]← getConnectedDevices();
3 for device in devices do
4 ping(device);
5 RSS ← getRSS(device);
6 log(device,RSS);

7 end
8 wait(5);

9 end

5.1.3 Range Tests

It was important to first perform the range tests in order to assess the viability

of the project and guide the further tests - e.g. is there a discernible difference

in the RSS when the user moves away from the drone within a reasonable range

of values?

The setup for this test was as per figure 5.1. Every five seconds a metre step

was taken along the line, with a camera setup to line up the data to when the

device was at the various distances. The laptop was disconnected from the Pi’s

WiFi whilst the phone tests were executed.

Both figures 5.2 & 5.3 show the strong correlation between distance and RSS

up until 5 - 10m away from the drone, however beyond that there is a lack of

25

fidelity - this means that ideally the drone needs to be as close as possible to

devices to gain greater accuracy above the significant noise. Hence, the lower

the height of the drone the better, but balanced with safety, a hovering height

of approximately 5 - 6m would minimise error.

Notably they are not at the same level - e.g. when the drone receives an

RSS value of -72 dBm from the phone it is at approximately 5m away from the

drone; conversely receiving this level from the laptop, it is more likely to be 20 -

30m away. This difference is most likely caused by a stronger transmitter in the

laptop and means that a model must be created on the drone, approximately

matching the lines of best fit.

Figure 5.2: The effect on the phone’s RSS received by the Pi, when varying
the distance of the phone

26

Figure 5.3: The effect on the laptop’s RSS received by the Pi, when varying
the distance of the laptop

5.1.4 Directional Tests

The aim of these was to see if the WiFi antenna on the Pi, when attached to

the drone, was at all directional. If there was a strong correlation then the

drone could simply rotate at a number of points, providing an angle at each and

triangulation could be used to localise the user, chapter 2.

In a similar vein to the previous tests, the directional tests were setup in the

same manner as figure 5.1 shows. The routine for these tests was to leave the

laptop and phone connected whilst rotating the drone 90 clockwise every 2:05

minutes - in order to log 50 points of data every 2.5 seconds for each orientation.

The test was performed with the laptop and phone 5m, 10m and 20m away from

the drone as these would be common distances in flight.

27

The tests were performed in the order: forward, left, backward, right, where

left means the phone is to the left and vice-versa for the other directions.

The box and whisker plots shown in figures 5.5 - 5.12 show the results from

these tests - with the box representing the 25th - 75th percentile data points, the

central line as the median, the whiskers indicating the minimum and maximum

values and the marker showing the mean of the values.

Figure 5.5 shows an ideal case of rotating the drone, where it should be

possible to discern the direction to the user from recording a few data points

in each orientation. Unfortunately, the findings from the laptop at the same

range, figure 5.6, are slightly less conclusive as the mean values are less than

4dBm apart. There is a notable level of noise in the readings, meaning to draw

meaningful conclusions a number of data points should be averaged.

The reason the best reception is found towards the back of the drone is

possibly due to the location of the WiFi antenna on the Pi board (Eames 2016),

hence receiving very little electromagnetic inference from other boards. In the

context of the drone, shown in figure 5.4, the antenna has few obstructions when

it is directly behind and this is best reflected in data from when the laptop was

10m away, figure 5.8 - the greater the angle from the back of the drone, the worse

the signal, but this is inconsistent with the signal received from the laptop at

20m, figure 5.10.

Figure 5.4: Location of the WiFi antenna on the Pi in relation to the drone

Comparing the data at 10m against 20m, figures 5.7 & 5.8 and 5.9 & 5.10

respectively, there is a greater overlap in data but there is still a distinctly

28

higher trend for the backward values. However, in figure 5.10, the forward and

backward data is quite close - meaning that it would not be reliable to base the

drone’s movements solely from these readings.

Using the data from the aforementioned tests, figures 5.11 and 5.12 compare

the forward facing values from the various distances for the phone and laptop.

This determines the distance between the points used to trilaterate the user.

Based on figure 5.11, within a horizontal plane it may be possible to use a

distance between the points of 5m, however due to the sizeable overlap, for

greater certainty and considering the larger distances when the drone is airborne,

a distance of 10m or more would mean there is likely to be a more identifiable

difference in the readings.

29

−90 −85 −80 −75 −70

Forward

Left

Backward

Right

RSS (dBm)

O
ri

en
ta

ti
on

o
f

th
e

d
ro

n
e

Phone RSS at 5m

Figure 5.5: The effect of rotating the drone on the RSS received by the Pi
from a phone 5m away

−74 −72 −70 −68 −66 −64 −62 −60 −58

Forward

Left

Backward

Right

RSS (dBm)

O
ri

en
ta

ti
on

of
th

e
d

ro
n

e

Laptop RSS at 5m

Figure 5.6: The effect of rotating the drone on the RSS received by the Pi
from a laptop 5m away

30

−95 −90 −85 −80 −75

Forward

Left

Backward

Right

RSS (dBm)

O
ri

en
ta

ti
o
n

of
th

e
d

ro
n

e

Phone RSS at 10m

Figure 5.7: The effect of rotating the drone on the RSS received by the Pi
from a phone 10m away

−80 −78 −76 −74 −72 −70 −68 −66

Forward

Left

Backward

Right

RSS (dBm)

O
ri

en
ta

ti
o
n

of
th

e
d

ro
n

e

Laptop RSS at 10m

Figure 5.8: The effect of rotating the drone on the RSS received by the Pi
from a laptop 10m away

31

−98 −96 −94 −92 −90 −88 −86

Forward

Left

Backward

Right

RSS (dBm)

O
ri

en
ta

ti
on

o
f

th
e

d
ro

n
e

Phone RSS at 20m

Figure 5.9: The effect of rotating the drone on the RSS received by the Pi
from a phone 20m away

−85 −80 −75

Forward

Left

Backward

Right

RSS (dBm)

O
ri

en
ta

ti
o
n

of
th

e
d

ro
n

e

Laptop RSS at 20m

Figure 5.10: The effect of rotating the drone on the RSS received by the Pi
from a laptop 20m away

32

−95 −90 −85 −80 −75 −70

5

10

20

RSS (dBm)

D
is

ta
n

ce
fr

o
m

th
e

d
ro

n
e

(m
)

Phone RSS at 5m, 10m, 20m

Figure 5.11: The effect of varying the distance on the RSS received by the Pi
(facing forward) from a phone, with 50 readings in each range, logged 24/min

−75 −70 −65 −60

5

10

20

RSS (dBm)

D
is

ta
n

ce
fr

om
th

e
d

ro
n

e
(m

)

Laptop RSS at 5m, 10m, 20m

Figure 5.12: The effect of varying the distance on the RSS received by the Pi
(facing forward) from a laptop, with 50 readings in each range, logged 24/min

5.2 Drone Sensor Research

It is necessary to ascertain the fidelity of the drone’s sensors in order to guide the

design of the project’s algorithms, including the GPS, altimeter and compass.

33

5.2.1 Test Setup

As before, all data was logged successively using the same code, with all of the

boards on the drone powered up, however not flying. The weather conditions

remained foggy throughout, which could potentially have affected GPS and

barometer readings.

5.2.2 GPS Tests

Knowing the position of the drone is obviously desirable, as this will be used

for maintaining position and trilaterating the location of the users. Whilst the

accuracy of GPS is well-documented (U.S. Air Force 2017), the precision of the

sensor on this drone (CN-06 v2) may differ. To test, it was simply left static on

the ground for five minutes, logging every five seconds, providing 60 data points

for each of the three tests. In all of these tests, the GPS readings were based

on seven or more satellites on average.

0 2 4 6

Test 1

Test 2

Test 3

Distace (m)

T
es

ts

GPS position range

Figure 5.13: GPS reported distance from the initial point when drone remains
static on the ground

Figure 5.13 shows the range of data from the initial recorded point - this is

not the true location, however the drone does not rely on knowledge of the exact

geographic location, only a relative measure from its takeoff position, hence this

graph is showing the precision of the data. The precision would likely increase

with greater visibility to the sky when the drone was airborne, however, with the

34

recorded mean averages, this would direct the size of the trilateration towards

10m edges. Mapping the points onto the globe, the average of the geographical

location of the points for tests 1 & 3 was less than a metre away from the initial

point, conversely for test 2 it was 3.78m (2 d.p.) - given this and the large

inter-quartile ranges, it is necessary to average a small number of points.

5.2.3 Altimeter Tests

Figure 5.14: Altimeter readings taken from the barometric sensor on the flight
controller over time whilst varying altitude

These measurements were taken by hoisting the drone in one metre incre-

ments from a ladder (similar to the method used for measuring RSS, figure 5.1,

only vertical). Initially the test was performed on a smaller scale (only up to

2m), however the data was thought to be corrupted due to the foggy weather,

35

so the test was repeated on a clear day with a larger range of height, shown in

figure 5.14.

The altimeter data is imprecise and unreliable for the range required, with

limited accuracy: traits that are undesirable for the stability of the drone. Ef-

forts were made to verify that the readings were being taken from the Flight

Controller’s sensors correctly, but to no avail: delaying the project development.

Whilst there is some accuracy to the data, it is not enough for reliable

vertical stability of the drone, mandated by requirement M.4 - as a solution,

manual control of the throttle was given to the operator, chapter 6, which also

increased safety. There are also altitude values from GPS, however GPS was

primarily designed for horizontal accuracy (U.S. Air Force 2017) and vertical

accuracy is typically within 10-20m (Gladstone 2006).

5.2.4 Compass Tests

The values from compass internal to the Flight Controller (FC) were found to

be very unpredictable: they would sporadically range between approximately

0 and 410 and change each time the FC was initialised. This in of itself is an

inconvenience, however the values were also imprecise and couldn’t be resolved

to individual directions, e.g. in one test the values for the drone facing north

ranged between 392 and 398, and when facing west between 385 and 395. As

there was such variation in the data, it was impractical to plot graphically.

With this in mind and not wanting to delay the project further, the proof

of concept conceived in this project will not rotate, however algorithms and

prototypes can be designed, leaving future work to address this this issue.

5.3 Algorithm

5.3.1 General Principle

Once the drone is flying, the program can essentially be reduced down to a

maximisation problem. For example, figure 5.15 shows how the RSS is perceived

by the drone from two devices at two separate locations, where one device has

a more powerful transmitter than the other, e.g. a laptop and a phone. Given

this plot, it is trivial to locate the optimum position for the drone to provide

the best signal to the two devices.

36

Figure 5.15: Representation of the RSS from two devices when the drone
moves in the horizontal plane

However, as seen from the previous tests, there is a lot of noise in the data

and the search landscape is more likely going to look like figure 5.16. This is

the entire search space at only a single point in time, however the drone can

only sample at single (x, y) coordinate. Furthermore, the devices can move, the

drone’s WiFi antenna is slightly directional and the drone’s position is difficult

to exactly locate in all six degrees of freedom. With these points in mind, the

following algorithm has been designed.

37

Figure 5.16: Representation of the RSS from two devices, with noise, when the
drone moves in the horizontal plane

The drone takes off and looks for the best direction to start searching, then

performs a square, starting in that direction. Once the square is completed,

the drone trilaterates the users and moves to the position which it decides will

give the best signal to the users. This is detailed in algorithm 2, which assumes

perfect flight. In addition, there would be further fail-safes and cases where

the drone may land, however, these depend more on the exact implementation.

In this algorithm, the drone lands after 10 minutes, specified on lines 5 & 6 of

algorithm 2 - this would need to be tuned for the real world application.

5.3.2 States

The states defined on line 1 of algorithm 2 are:

• TAKEOFF

The drone’s initial state. Gets the drone up to its minimum height of 6m

- this is based from the data shown in figures 5.2 & 5.3: the best WiFi

distance fidelity is within the 10m range, however for safety, a height of

6m is a balance.

38

Algorithm 2: General algorithm for the drone

1 TAKEOFF ← 0, LANDING← 1, STARTSEARCH ← 2,
SEARCH ← 3, OPTIMAL← 4;

2 state← TAKEOFF,RSSLog ← [], rotation← 0,minHeight← 6;
3 while true do
4 RSSLog ← RSSLog + getRSSLog();
5 if flightTime > 10 minutes then
6 state← LANDING;
7 end
8 switch state do
9 case TAKEOFF do

10 if height is 0 then
11 takeOffPosition← currentPosition();
12 end
13 if height < minHeight then
14 goUp();
15 else
16 state← STARTSEARCH;
17 end

18 end
19 case LANDING do
20 if currentPosition() 6= takeOffPosition then
21 goTo(takeOffPosition);
22 else if height > 0 then
23 goDown();
24 else
25 quit();
26 end

27 end
28 case STARTSEARCH do
29 rotateAndWait();
30 if finished rotating then
31 turnTo(bestDirection(RSSLog));
32 state← SEARCH;

33 end

34 end
35 case SEARCH do
36 square();
37 if no-one connected during square then
38 state← LANDING;
39 end
40 optimalPosition← calculateOptimalPosition(RSSLog);

41 end
42 case OPTIMAL do
43 if currentPosition() 6= optimalPosition then
44 goTo(optimalPosition);
45 else if no-one connected or weak RSS then
46 state← SEARCH;

47 end

48 end
49 wait(1);

50 end

39

• LANDING

Lands the drone in its takeoff position and then powers it down.

• STARTSEARCH

Rotates the drone and waits in each orientation for three seconds in order

to log three RSS readings - this is in an effort to assess the direction where

the most users are, utilising the slight directionality of the antenna on the

Pi, shown in figures 5.5 - 5.10. rotateAndWait() would remain in each

of the four compass directions for three seconds in order to log three RSS

reading to average. Then bestDirection() would return the direction with

the lowest sum of averages from the recent RSS readings in the RSSLog.

• SEARCH

The search consists of performing a 10m square. This was chosen because

there is approximately only 10m of fidelity in RSS values, shown in figures

5.11 & 5.12. From the data collected whilst performing the square, the

drone will trilaterate the position of each user using the lateration formula,

equation 2.1. It will then be a matter of predicting where the users will

be, based on the recent locations of the user, and then averaging these

positions in order to provide the best signal to the most people. An

assumption of this algorithm is that there will be at least one device

connected: the drone will need to be monitored by an operator, if this

operator can not be located, the drone has potentially flown too far, or

the operators device has failed - for safety, the drone lands (defined on

lines 37 & 38).

• OPTIMAL

The drone moves to where it believes is the best position to provide the

best coverage to the devices which have recently connected.

5.3.3 Finding the Optimal Location

As there is not a constant correlation between RSS and distance, shown by the

difference in magnitudes between figures 5.2 & 5.3, it is necessary to approximate

the values for A, the RSS from the device at one metre, and n, the path loss

exponent, in equation 2.4 so that the only unknown is r (where S is the RSS

from the device) - the distance from drone, restated:

r = 10
S−A
−10n (2.4 restated)

40

Rearranging equation 2.4 to make A the subject gives equation 5.1:

A = S + 10n log10 r (5.1)

It will be assumed that the lowest absolute RSS values received during the

duration of the flight are logged when the drone is above the user and hence

both S and r will be known: the drone hovers at 6m and the user’s device is

assumed to be at approximately 1m from the ground, so r = 6 − 1 = 5. To

reduce the effect of noise, shown by the box plots in figures 5.5 - 5.10, three

values will be averaged.

The value for n can be approximated from the test data shown in figures 5.2

& 5.3, shown in table 5.1:

Line of Best Fit Equation

Phone Test 1 y = −10.28 lnx− 52.918

Phone Test 2 y = −9.325 lnx− 56.28

Phone Test 3 y = −8.998 lnx− 59.532

Laptop Test 1 y = −9.138 lnx− 44.648

Laptop Test 2 y = −9.123 lnx− 42.413

Laptop Test 3 y = −9.368 lnx− 42.664

Table 5.1: Lines of best fit from figures 5.2 & 5.3

As an aside, these show observational values for A.

Converting these from expressions in the form y = m lnx+ c to those with

base 10 (to match equation 5.1) using the method y = m
log10 e log10x+c produces

table 5.2:

41

Line of Best Fit Equation n (3 d.p.)

Phone Test 1 y = −23.670 log10 x− 52.918 2.367

Phone Test 2 y = −21.472 log10 x− 56.28 2.147

Phone Test 3 y = −20.719 log10 x− 59.532 2.072

Laptop Test 1 y = −21.006 log10 x− 44.648 2.101

Laptop Test 2 y = −21.571 log10 x− 42.413 2.157

Laptop Test 3 y = −21.041 log10 x− 42.664 2.104

Average 2.157

Table 5.2: Lines of best fit from figures 5.2 & 5.3 in log10

From this, the value for n is approximated to 2.2, giving allowances for

anything blocking line of sight and other extraneous factors. Filling in the

previous unknowns in equation 5.1 gives equation 5.2, where S is the average of

the three best RSS recordings:

A = S + 10 · 2.2 · log10 5 (5.2)

This is calculated on line 7 of algorithm 3 for all devices.

It is then a matter of applying equations 2.1 and 2.3 to all devices, restated:



r21 − r22 + x22 + y22 − x21 − y21

r21 − r23 + x23 + y23 − x21 − y21

. . .

r21 − r2N + x2N + y2N − x21 − y21


=



2 · (x2 − x1) 2 · (y2 − y1)

2 · (x3 − x1) 2 · (y3 − y1)

.

2 · (xN − x1) 2 · (yN − y1)



x
y



(2.1 restated)

D = C

x
y

⇔
x
y

 = (CT · C)−1CTD (2.3 restated)

42

Arrays C & D in algorithm 3 represent associative arrays of matrices, where

the key is the device number and C & D correspond to the matrices in equa-

tion 2.3. The result of the matrix multiplication is stored in a similar array,

estimated, where estimated[3][0] refers to the first row of the fourth device’s

estimated location (the x coordinate, as per equation 2.3).

For simplicity, this algorithm assumes that all devices are connected through-

out and the optimal location is simply an average of the estimated locations -

in reality the devices may become disconnected and in the implementation there

would be some form of mobility prediction.

5.4 Summary

There is a clear relationship shown between RSS and distance in figures 5.2 &

5.3, which gives a founded backing to compute the values in table 5.2, meaning

the user can be trilaterated. Notably, this proves the viability of the project

and satisfies objective 6; however, there is notable noise in the data, figures 5.5 -

5.12. The drone’s GPS sensor is acceptable for use on this project, however the

altimeter and compass are not accurate enough to meet objective 4, so cannot

be used - this will affect the implementation on the drone, chapter 6.

43

Algorithm 3: calculateOptimalPosition()

Input : RSSLog: array of RSS values and the location at which they
were taken, each stored as an object where RSSLog[i].x,
RSSLog[i].y & RSSLog[i].RSSs are the X & Y coordinates of
the drone and RSS values at the time of the reading i
respectively. .RSSs is structured as an associative zero-indexed
array, where .RSSs[0] refers to the RSS value from the first
device.
devicesCount: number of connected devices

Output: The optimal location as (X,Y) coordinates
1 lowestRSSs← [];
2 for dev in length(devicesCount) do
3 lowestRSSs[dev]← threeLowestV alues(RSSLog, dev);
4 end
5 n← 2.2, A← [], C ← [], D ← [], estimated← [];
6 for dev in length(devicesCount) do
7 A[dev]← lowestRSSs[dev] + 10 · n · log10(minHeight− 1);
8 C[dev]← [], D[dev]← [];

9 end
10 for i in length(RSSLog) do
11 RSSLog[i].distances← [];
12 for dev in length(devicesCount) do

13 RSSLog[i].distances[dev]← 10
RSSLog[i].RSSs[dev]−A[dev]

−10·n ;
14 end

15 end
16 for i in 1 to length(RSSLog) do
17 CLine←

[2 · (RSSLog[i].x−RSSLog[0].x), 2 · (RSSLog[i].y −RSSLog[0].y)];
18 for dev in length(devicesCount) do
19 addMatrixLine(C[dev], CLine);
20 DLine← [

(RSSLog[0].RSSs[dev])2 − (RSSLog[i].RSSs[dev])2 +
(RSSLog[i].x)2 + (RSSLog[i].y)2 −
(RSSLog[0].x)2 − (RSSLog[0].y)2];

21 addMatrixLine(D[dev], DLine);

22 end

23 end
24 for dev in length(devicesCount) do
25 estimated[dev]← (C[dev]T · C[dev])−1 · C[dev]T ·D[dev]
26 end
27 optimalx = 0, optimaly = 0;
28 for dev in length(devicesCount) do
29 optimalx = optimalx+ (estimated[dev][0]/n);
30 optimaly = optimaly + (estimated[dev][1]/n);

31 end
32 return (optimalx, optimaly);

44

Chapter 6

Implementation

6.1 Prototype

To avoid potential disasters, a virtual prototype was built: reducing the pos-

sibility of algorithmic problems whilst in the air, like non-termination of the

program or damage to the drone.

6.1.1 Technology

Figure 6.1: Prototype in the starting search state (rendered in Google
Chrome)

45

The prototype was written in JavaScript (JS) with the Three.js library, which

renders to a WebGL HTML canvas, much alike figure 6.1. This was chosen as it

was fast to develop, gave visual feedback and didn’t require specialist knowledge

of the physics. This is as opposed to either writing a program specific simulation

from scratch, or using a maths/physics based package, like MATLAB, Maple or

Simulink.

6.1.2 Overview

The elements of the prototype are the:

• pink cuboid, representing the location of the user. This can either remain

static or is controllable via the arrow keys.

• dark blue cuboid, representing the estimated location of the user. This

is not shown until the an estimate has been made, e.g. it is not visible in

figure 6.1 when the drone is initially starting to search, however is visible

in figures 6.3 & 6.2, when the drone has already searched once.

• purple rounded triangular prism, representing the drone. Triangular

so that it is clear which way it is facing.

• green plane, representing a 100m2 field. However the drone has been

limited to only operate within 50m2, centred on its take off location. Sim-

ilarly, the user is limited to the central 50m2 of the field.

• debug output, showing key information about the the drone’s state and

estimates.

It is possible to adjust the location of the camera using mouse gestures,

shown in 6.2.

The JS prototype is largely an implementation of algorithm 2. To make

the movements and decisions of the drone clearest, there is only one user in the

prototype, however, wherever possible it was written to accommodate additional

users.

The drone will take off and enter the starting search state, shown in figure

6.1, where it rotates to each compass orientation and waits at each for three

seconds to log three RSS values for the user. It then moves into the searching

state and executes a square, starting in the best direction; having completed this,

the drone will estimate the location of the user and move to where it considers

46

the optimal position, using a heuristic of the user’s previous estimated locations.

The drone transitions into the optimal state, picture in figure 6.2. This then

repeats when the user’s signal is considered to be poor or 30 seconds have passed

in the optimal state and the drone will start searching again, shown in figure

6.3.

Figure 6.2: Prototype in the optimal state (rendered in Google Chrome)

Figure 6.3: Prototype in the searching state again after finding an estimate
for the user (rendered in Google Chrome)

47

6.1.3 Simulating RSS

Listing 6.1 shows the method used to simulate the RSS values from the user,

where the inputs are the drone, drone, and any user, obj. The function is based

on equation 2.4, shown in line 10, where n is the path loss exponent and a is

the RSS from the device at one metre - these are based on the observed values

from the phone, figure 5.2.

1 function perceivedRSS(drone ,obj) {

2 // estimate what the RSS is for the obj from the drone

3

4 distance = distanceBetweenObjects(drone ,obj);

5

6 // rough relation between distance and RSS (from recorded data)

7 var n = 2.2;

8 var a = -55;

9

10 var RSS = -10 * n * Math.log10(distance) + a;

11

12 angleToUser = getHeading(drone) - angleToObject(drone ,obj);

13

14 // the signal is better when the user is to the rear of the drone

15 // this is an approximation using a bell curve

16 backwardFactor = normalPDF(angleToUser ,180 ,45) * 2;

17

18 // when the user is closer the effect seems to be greater

19 // this is approximation of how that works (from recorded data)

20 // y = -2.453ln(x) + 13.747

21 RSS += backwardFactor * (-2.453 * Math.log(distance) + 13.747);

22

23 // need to add noise

24 var noiseVariance = 2 // rough variance of the noise

25

26 // it seems the noise is approximately 1.5x larger at the back

27 noiseVariance *= 1 + 0.5 * backwardFactor;

28

29 RSS += (randomNormal () - 0.5) * (noiseVariance);

30

31 return Math.round(RSS);

32 }

Listing 6.1: perceivedRSS function from prototype

To account for the increased signal when the user is to the back of the drone,

the backwardFactor is greatest when the user is directly behind the drone (when

angleToUser is 180). As the exact relation between the RSS from a device and

the angle to drone is unclear, it was approximated to a normal distribution,

48

displayed in figure 6.4 and assigned on line 16.

0 45 90 135 180 225 270 315 360
0

0.1

0.2

0.3

0.4

0.5

angleToUser (deg.)

n
o
r
m
a
l
P
D
F
(
a
n
g
l
e
T
o
U
s
e
r
,
1
8
0
,
4
5
)

Figure 6.4: Output of normalPDF(angleToUser,180,45) used in listing 6.1

From figures 5.2 - 5.12, it is clear that there is a lot of noise in the data, so

noise is added to the data, as explained by the comments in listing 6.1, where

randomNormal() returns a random number, from a normal distribution with µ = 0

& σ2 = 1.

6.1.4 Data Structures

Through developing this prototype, considerations were made for how the data

should be stored whilst the drone was operating. For example, to log the RSS

values, the RSSLogItem & RSS objects were created, shown in listing 6.2. The

RSSLog consists of an array of RSSLogItem elements, with each of these elements

containing the time, position and heading of the RSS readings; the readings

themselves are stored in RSSLogItem.RSSs, which is an array of RSS objects. These

RSS elements are for each device connected at the time of the reading, storing

the MAC address, IP address and Received Signal Strength from the device.

1 class RSS {

2 // an RSS measurement (stored in RSSLogItem.RSSs)

3 constructor(signal , MAC , IP) {

49

4 this.MAC = MAC;

5 this.IP = IP;

6 this.signal = signal;

7 }

8 }

9

10 class RSSLogItem {

11 // a single log entry

12 constructor(position , RSSs , time , heading) {

13 this.position = new point3D(

14 position.x,

15 position.y,

16 position.z,

17);

18 this.RSSs = RSSs; // array of RSS elements

19 this.time = time;

20 this.heading = heading;

21 }

22 }

Listing 6.2: RSS Classes (RSS & RSSLogItem) from prototype

6.1.5 Findings

The prototype was useful for establishing:

• How to implement algorithm 2 in the sense of a embedded system where

the program loops multiple times a second - hence there is little context

in the current loop and it must be stored in global variables.

• The application of the maths with realistic data and seeing how the esti-

mates can at times be quite far from the true value - hence it was necessary

to add some limitations and assumptions to make sure the drone did not

fly too far from its initial location.

• Which data to store and how it should be stored, including the construc-

tion of objects and the use of global variables - like storing the starting

time of when a state had been entered.

• When to start searching for the user again once the optimal location had

been decided upon: in the prototype the drone remains at the optimal

position for 30 seconds, unless the RSS from the connected devices drops

below -80dBm (as the service provided is poor below this level (Metageek

2017)), or the current average signal from the connected devices is 40%

worse than the best values received.

50

6.2 Drone

This section covers the construction and configuration of the components on the

drone, figure 6.5.

Figure 6.5: Completed drone from above

6.2.1 Components

The components used in this project were:

• Raspberry Pi 3 Model B in clear case (indicated as 1 on figure 6.6)

• Crius CN-06 v2.0 GPS (indicated as 2 on figure 6.6)

• CRIUS All in One Pro Flight Controller v2.0 (indicated as 4 on figure 6.6)

• DJI Flame Wheel F450 ARF Kit, including the frame (indicated as 5

on figure 6.6), DJI 2312E motors (indicated as 3 on figure 6.6), ESCs

(indicated as 7 on figure 6.7) and DJI self-tightening 9443 propellers

• Multistar 3S 3000mAh batteries (indicated as 6 on figure 6.6)

• HobbyKing Lipoly Low Voltage Alarm (2s-4s) (indicated as 8 on figure

6.7)

51

Figure 6.6: Completed drone from above, labelled

Figure 6.7: Completed drone from below, labelled

52

6.2.2 Build

First the frame was constructed, figure 6.8. There are multiple guides available

to aid with the construction of the drone, including the official video by DJI

(2012). This involved soldering a XT60 connector to the bottom board of the

frame (the yellow connector seen in figure 6.5), which acts as power rails to the

ESCs, which were also soldered on. The arms were screwed into top and bottom

boards with Allen keys. Similarly, the motors were screwed into the frame and

connected to the ESCs using the three phase cables, shown clearly in the lower

right-hand side of figure 6.7. Figure 6.8 shows the completion of these steps.

Figure 6.8: Construction of the drone’s frame

The Flight Controller (FC) was affixed to the front of the bottom board of

the frame using double sides foam tape; the front being the two red arms of the

drone, shown in figure 6.5.

Figure 6.9 shows the configuration of the motors and their corresponding

motor connection pin number on the FC, as detailed in the various guides for

the FC (Gaza07 2012, Jumpy07 & Gaza07 2013). The motor connections on

the FC can be seen in figure 6.10 - the four connectors plugged into the series

of pins closest to the centre of the drone.

53

Figure 6.9: Direction of the motors and the pins they connect to

Figure 6.10: Connections to the flight controller on the drone

The GPS is connected to the serial pins of the FC, shown in the foreground

of figure 6.10, with the receiver pin on the FC connected to the transmitter pin

of the GPS module (Gaza07 2012, p. 8). The GPS is then attached to one of

54

the arms of the drone using a cable tie, with the antenna facing upward, shown

in figures 6.5 & 6.10. The FC is connected to the Pi via the orange USB cable,

which is used to send the control signals.

Both the Pi and the FC are powered by a 5V 3A Universal Battery Elimi-

nation Circuit (UBEC) (shown under the USB connections on the Pi in figure

6.10), which regulates the battery’s voltage and converts it to a consistent 5V.

As the FC is being powered externally, the jumper pin was removed (Gaza07

2012, p. 6). The power is connected to the Pi via the General Purpose Input

Output (GPIO) pins, the red & black cables in figure 6.5.

Likewise, the case for the Pi is attached to the top board using double sided

foam tape, as well as a cable tie underneath. The Pi itself is then screwed into

the case, however, there is no mechanism for securing the top of the case down

- electrical tape can be used, to allow future access to the Pi.

To power the drone, the battery is plugged into the XT60 connector, the

yellow connection in figure 6.5. The battery also plugs into the low voltage

alarm (indicated as 8 on figure 6.7), which emits a loud tone when the battery

could become damaged if continued to be used. It is fastened to the underside

of the drone so that it is also visible during flight. The battery’s voltage level

could have also been connected to the FC, however it was thought best not to

have a single point of failure.

6.2.3 Configuring Components

In order to confirm the GPS module was working correctly and to store settings

to it, a custom cable was made to connect the GPS to a USB. A config file was

sent to the module and stored to the EEPROM (memory). Figure 6.11 shows

ubloc’s u-center software confirming the GPS module works at 38400 baud.

55

Figure 6.11: ublox u-center GUI

The settings of the FC were configured in config.h of the MultiWii source

code (MultiWii 2015b), with other minimal changes made to the code. The key

settings are:

• #define QUADX - the layout of the drone’s motors

• #define CRIUS_AIO_PRO - the type of FC

• GPS settings:

– #define GPS_SERIAL 2 - the serial port that the GPS is connected to

– #define GPS_BAUD 38400 - the baud rate for communication with the

GPS

– #define UBLOX - the GPS protocol used by the Crius CN-06 v2.0

These settings were confirmed by the use of the MultiWiiConf software,

which also shows the status of all of the peripherals, figure 6.12. Also seen on

this screen are PID values, which affect the stability and handling of the drone

(Liang 2013), which were tuned to benefit object 3.

56

Figure 6.12: MultiWiiConf GUI

6.2.4 Safety

It would be remiss of me not to include the common, key safety points associated

with this equipment:

• Lithium Polymer (LiPo) Batteries

There are many comprehensive guides on the safe handling of LiPo batter-

ies (HobbyKing 2018) and the consequences of malpractice with Lithium-

based batteries are severe (Samsung Group 2017). The key points can be

summarised under the topics of:

– Storage

The batteries should be stored in a LiPo safe (fire proof) container

at 3.8V per cell, i.e. for the three cell batteries used in thise project,

they should be stored at 11.4V. Check the voltage of the battery if

they have not been used for a long period of time (> 6 months).

– Charging

Charge the batteries using a balanced charger designed for LiPo bat-

teries, keeping them in the fire proof container. Ensure that they are

not over charged and never charge a battery with a puncture or any

sign of swelling.

• Propeller Safe Practice

Only attach the propellers when flying the drone: they are fragile and will

57

break easily; also, they rotate at a rate fast enough to break fingers - avoid

contact with them whilst they are in motion. During all programming,

the propellers remained off the drone, as seen in the various figures.

There is also the risk to the wider public - fly responsibly and within

the law (Ministry of Defence & Military Aviation Authority 2017). For

all tests in this project using experimental code, the drone had a tether

attached to limit its range and prevent loss.

• Internet Safety

Strong security should be used when connecting the drone to the internet

- there is potential for control to fall into the wrong hands. All of the

testing was undertaken offline.

Throughout the project, all of these points were adhered to and no damages

occurred.

Please note, improper handling of this equipment can result in serious

injury and legal consequences: the author holds no legal standing or liability for

injury or damage caused by the further use of the drone built in this project,

nor attempts to replicate a similar aircraft.

6.2.5 Pi Configuration

The Raspberry Pi 3 Model B, with a distribution of Debian installed on a 16GB

microSD card, was configured as an AP using Hostapd and ISC DHCP was used

to assign IP addresses.

The secured network was configured with the hostapd.conf file shown in listing

6.3. Using this configuration, the drone will appear in the WiFi devices list of

other devices as “pidrone”, and connected to with the password “garethnunns”;

however, with only Hostapd alone, the Pi will not assign the connecting device

an IP address and the connection will fail.

1 interface=wlan0

2 driver=nl80211

3 ssid=pidrone

4 hw_mode=g

5 channel =7

6 wmm_enabled =0

7 macaddr_acl =0

8 auth_algs =1

9 ignore_broadcast_ssid =0

10 wpa=2

58

11 wpa_passphrase=garethnunns

12 wpa_key_mgmt=WPA -PSK

13 wpa_pairwise=TKIP

14 rsn_pairwise=CCMP

Listing 6.3: /etc/hostapd/hostapd.conf file on the Pi

Listing 6.4 shows how IP addresses are assigned to those who connect to

the Pi. The drone operates in the 192.168.10.0/24 IP space, with the Pi acting

as a router on 192.168.10.1 and addresses are assigned to those who connect in

the range 192.168.10.10 - 192.168.10.254. This allows for plenty of devices to

connect to the drone and leaves space for other additional drones to operate

in the 192.168.0.0/16 IP space; this drone was placed in this range to avoid IP

address conflicts with home routers, which are typically in the 192.168.0.0/22

range.

1 default -lease -time 600;

2 max -lease -time 7200;

3

4 ddns -update -style none;

5

6 subnet 192.168.10.0 netmask 255.255.255.0 {

7 authoritative;

8 range 192.168.10.100 192.168.10.254;

9 option domain -name "local -network ";

10 option domain -name -servers 8.8.8.8 , 8.8.4.4;

11 option routers 192.168.10.1;

12 option broadcast -address 192.168.10.255;

13 default -lease -time 3600;

14 max -lease -time 7200;

15 }

Listing 6.4: Key settings from /etc/dhcp/dhcpd.conf file on the Pi

Listing 6.5 covers the configuration of the network interfaces, where the

IP address of the ethernet port is assigned by the router it is connected to,

whereas the WiFi antenna is set static at 192.168.10.1. The packets were also

set to forward between the ethernet and the WiFi, meaning that when the Pi

is connected to the internet via the ethernet port, when connected to the Pi’s

AP you can connected to the internet.

1 auto lo

2

3 iface lo inet loopback

4 allow -hotplug eth0

5 iface eth0 inet dhcp

6

59

7 allow -hotplug wlan0

8 iface wlan0 inet static

9 address 192.168.10.1

10 netmask 255.255.255.0

11

12 # restore iptables

13 up iptables -restore < /etc/iptables.ipv4.nat

Listing 6.5: /etc/network/interfaces file on the Pi

Hostapd and ISC DHCP were both run at start-up by calling start.sh, listing

6.6, with a cron job.

1 sudo hostapd /etc/hostapd/hostapd.conf -B

2 sudo service isc -dhcp -server restart

Listing 6.6: drone/start.sh file on the Pi

The Pi was also configured so that it could be connected to via Secure Shell

(SSH), which meant code could be transferred and executed remotely, including

when it is offline and in flight. To map the Pi’s IP address to a domain name,

the /etc/hosts file on Unix-based systems must be edited to match the example

given in listing 6.7.

1 # This computer connected directly to the Pi

2 192.168.10.1 pidrone

3 # This computer and the Pi are connected to a network and the Pi

has been assigned an IP address of 192.168.2.35 on that network

4 192.168.2.35 pidrone

Listing 6.7: /etc/hosts file on the development computer

6.3 Program

This section covers the main implementation of the project on the Pi.

6.3.1 Development Environment

Developing for embedded systems inherently means transferring the code to the

device and the need for versioning. The whole project was maintained using a

Git repository, to aid coding between various devices and backing up the project

to separate storage locations. The Pi microSD was also routinely backed up, in

case of corruption or loss.

Microsoft Visual Studio Code was chosen as the source code editor, as it has

a large feature set, including Git control, syntax highlighting and an integrated

60

terminal, figure 6.13. The terminal was used to control the Pi over SSH. To

make the state and movement of files clearer, Transmit was used as an SFTP

client 6.13.

Figure 6.13: Development Environment: (left) Microsoft Visual Studio Code,
(right) Transmit

An interesting element was powering the drone with the LiPo batteries,

which limited the connection time to the drone, plus how often one could connect

to it which lengthened the development period. When the motors and FC were

not required, the Pi could be powered via USB.

6.3.2 Interacting with Flight Controller

There were some difficulties interacting with the Flight Controller (FC) over

MultiWii Serial Protocol (MSP), such as:

• Unable to set the virtual Remote Control (RC) stick values

• Sensor values outside of possible bounds, e.g. a heading of -400, or a

longitude of 500

• Not recognising the GPS unit

This of course delayed the development, as all of these are essential for the

program to run correctly. Whilst there is some documentation for MultiWii Se-

rial Protocol (MSP) (MultiWii 2014b), it is often incomplete (MultiWii 2014a),

so there was a lot of trial and error involved.

61

There are various libraries available for interacting with a MultiWii Con-

troller (Vargas 2017, Dean 2015), alas these too are not fully functional and

some do not fully implement all of the features of the protocol, e.g. accessing

GPS coordinates. The library provided by Dean (2015) was used for this project

with some small modifications.

6.3.3 Web Server

In order to view the current status of the drone more clearly, a web dashboard

interface was built, figure 6.14; this is as opposed to looking at the script’s output

in an SSH terminal window (as a direct connection is impractical during flight),

which would be difficult to access on mobile devices, hard to read and would

take time to enter key commands - like landing the drone. This is similiar to

the debug window in the prototype which conveniently outputs key attributes,

figure 6.1.

The web server is run in a thread of the main drone program, all served by

a Python HTTPServer. Having not written a web server before there was a slight

learning curve, however a functioning server was produced: an example of how

to initiate it is given in listing 6.8 (assumes the corresponding modules have

been imported).

The server services all GET requests by looking for the requested file in the

folder specified at its initialisation, stored in WebServer.basePath - in line 1 of

listing 6.8, webDir is assigned the path of the /web directory in the folder above

and passed as an argument to the constructor of WebServer on line 2. Also passed

to the constructor on line 2 is the request handler class, WebHttpServer, and the

port it will operate on: 8000; to connect to the drone’s dashboard, the operator

goes to http://192.168.10.1:8000.

1 webDir = os.path.dirname(os.path.abspath(__file__)) + ’/../ web’

2 server = WebServer(webDir , (’’, 8000), WebHttpServer)

3

4 server.webState.state = ’Current State ’

5 server.webState.rc[’pitch’] = 1234

6 server.webState.devices[’88:53:95:57: b2:64’] = webDeviceLogItem (

7 -55,

8 ’88:53:95:57: b2:64’,

9 ’192.168.10.100 ’

10)

11 server.webState.devices[’a3:4d:21:f5:22:de’] = webDeviceLogItem (

12 # device that won’t get updates

13 -77,

14 ’a3:4d:21:f5:22:de’,

62

15 ’192.168.10.102 ’

16)

17

18 serverThread = threading.Thread(target = server.serve_forever)

19 serverThread.daemon = True

20 serverThread.start ()

21

22 try:

23 while True:

24 # simulate values from drone in the air

25

26 time.sleep (1)

27

28 server.webState.state = ’Testing Server ’

29 server.webState.rc[’throttle ’] = 1500 + 5* round(time.time()%60)

30 server.webState.heading = 200

31

32 server.webState.devices[’88:53:95:57: b2:64’]. signal = -50 -

random.randint (0 ,10)

33 server.webState.devices[’88:53:95:57: b2:64’].time = time.time()

34

35 if random.randint (0 ,10) == 10:

36 server.webState.devices[’88:53:95:57: b2:64’]. position =

pointTime(

37 random.uniform (52 ,53),

38 random.uniform (0,1)

39)

40

41 except KeyboardInterrupt:

42 pass

43 server.server_close ()

Listing 6.8: Example of running the web server from drone/webServer.py

Figure 6.14 shows the dashboard that was created with Bootstrap styling - an

open source toolkit for quickly building responsive web apps (Otto & Thornton

2017). It is very usable on mobile devices, figure 6.15, which is essential for the

nature of the applications of this project, where there will not always be access

to a large laptop or desktop computer.

The dashboard shows all of the key live settings from the drone, including

the current state, true virtual stick values from the FC, heading, altitude and

location. Furthermore, all of the devices connected over WiFi are listed at the

bottom, along with their key statistics and their estimated position (if the drone

has searched and trilaterated the RSS values for that device).

63

Figure 6.14: Drone dashboard

(a) (b) (c)

Figure 6.15: Drone dashboard viewed on a mobile

This works by the dashboard making POST requests to:

http://192.168.10.1:8000/api/v1/drone

64

This is handled by the WebHttpServer, which returns webStatus.dict_copy() as a

JSON object. webStatus, listing 6.9, provides a standardised way of sending the

data to the user, containing all of the fields seen on the dashboard, figure 6.14.

The Pi’s internal clock may be set to a different timezone (e.g. UTC vs.

daylight saving time), or the Pi has been disconnected from power & internet,

so its internal clock has not updated - this would cause an issue for calculating

how long ago a time value sent by the Pi was; to avoid this problem, the drone’s

current time, in seconds since the Unix Epoch (1st January 1970), is included

in each response, updated on line 26 of listing 6.9.

The purpose of using the webStatus.dict_copy() function, line 24, over the

built-in webStatus.__dict__ function is not only to update self.time, but also to

avoid accidental editing of the object and to convert the object references to

static data. For example, if one were to execute:

state = webStatus()

And then request it as a dict (useful for converting to JSON) and change a

value:

stateDict = state.__dict__

stateDict[’heading’] = 30

Then this will also in turn update state.heading; hence, a new instantiation

of the object is created in line 29. As webStatus.gps is an object itself, stateDict

[’gps’] would simply be a reference to the object and not contain the data

itself. Lines 30 - 34 convert the objects in webStatus to static data, using similar

dict_copy() functions in those classes.

1 class webStatus(object):

2 # returned by the web server

3 def __init__(self):

4 self.state = ’Initialising ’

5 self.rc = {

6 ’pitch’: 0,

7 ’roll’: 0,

8 ’yaw’: 0,

9 ’throttle ’: 0,

10 ’aux1’: 0,

11 ’aux2’: 0,

12 ’aux3’: 0,

13 ’aux4’: 0,

14 }

15 self.heading = 0

16 self.altitude = 0

17 self.gps = point (0,0)

18 self.started = False

65

19 # dict of form: {MAC:webDeviceLogItem ()}

20 self.devices = {}

21 # if the clock is set incorrectly , relative times can be

calculated from this

22 self.time = time.time()

23

24 def dict_copy(self):

25 # update the time

26 self.time = time.time()

27

28 # returns a dict as a new instantiation

29 dic = dict(self.__dict__)

30 dic[’gps’] = self.gps.dict_copy ()

31 # convert dict of objects to dict of dicts

32 dic[’devices ’] = {}

33 for MAC in self.devices:

34 dic[’devices ’][MAC] = self.devices[MAC]. dict_copy ()

35 return dic

Listing 6.9: webStatus from drone/classes.py

The webDeviceLogItem class, listing 6.10 includes all of the attributes which

are sent to the dashboard about the devices connected to the Pi’s WiFi: the

device’s MAC & IP address, its current RSS from the drone, the average of

the three highest RSS values received by the Pi from the device, its estimated

position and last time the device connected.

The estimated location defaults to 0 latitude, 0 longitude, estimated at a

time of 0 (the start of the Unix Epoch) on line 9. Hence, a simple test to see if

the position has been estimated by the drone is to check if webDeviceLogItem.time

> 0. This keeps the data types consistent and removes additional fields, e.g.

webDeviceLogItem.positionEstimate = True

Instantiations of webDeviceLogItem are maintained by the RSSLogger class, cov-

ered in the next section.

1 class webDeviceLogItem(object):

2 # the information sent by the web server about the devices

connected

3 def __init__(self ,signal ,MAC ,IP):

4 self.MAC = MAC

5 self.IP = IP

6 self.signal = signal

7 self.best = signal # average of the best signals

8 # most recent estimate of their location as pointTime ()

9 self.position = pointTime (0,0,0)

10 # most recent connection time

11 self.time = time.time()

66

12

13 def dict_copy(self):

14 # returns a dict as a new instantiation

15 dic = dict(self.__dict__)

16 # convert position object to dict

17 dic[’position ’] = self.position.dict_copy ()

18 return dic

Listing 6.10: webDeviceLogItem from drone/classes.py

Lines 23 - 39 of listing 6.8 update server.webState, which is an instantiation of

the webStatus class, emulating the drone’s changing virtual stick and RSS values

during flight, having initialised the devices first in the lines above them.

On the dashboard, figure 6.14, there are also options to send requests to

these endpoints:

• http://192.168.10.1:8000/api/v1/go

Go button - the drone takes off: this ensures there is an operator in

control of the drone before it flies. Return nothing.

• http://192.168.10.1:8000/api/v1/land

Land button - changes the drone into the landing state, which should

then land the drone. Returns a message or an error in JSON format.

• http://192.168.10.1:8000/api/v1/kill

Kill button - stops the main drone program running, disconnecting from

the FC and also restarts the Pi. Returns a message or an error in JSON

format.

• http://192.168.10.1:8000/api/v1/throttle

Throttle slider - this is the large slider in the centre of the dashboard

with the checkbox next to it, figures 6.14 & 6.15b. This allows the operator

to manually override the throttle; this is especially useful to ensure the

drone hovers in a stable fashion. Accepts JSON requests in the form of

listing 6.11 and returns nothing.

1 {

2 ’enabled ’: true ,

3 ’throttle ’: 1600

4 }

Listing 6.11: Example throttle request to /api/v1/throttle

67

This is currently an unsecured page open to all those connected to the drone,

which is ideal for this proof of concept. However, for production it would need

to be secured, either via a password, or there could be a set of whitelisted MAC

addresses which have access.

6.3.4 Logging RSS

In order to trilaterate the connected devices, the RSS values of the devices must

be logged. As with the web server, the RSS logs are stored in objects and the

constructors for these objects bear very similar likenesses to those used in the

prototype; comparing listing 6.2 to 6.12, the same data is stored in the same

structure. A slight difference is that RSSLogItem.time defaults to the current time

if no argument is passed, line 13.

1 class RSS(object):

2 # an RSS measurement (stored in RSSLogItem.RSSs)

3 def __init__(self ,signal ,MAC ,IP):

4 self.MAC = MAC

5 self.IP = IP

6 self.signal = signal

7

8 class RSSLogItem(object):

9 # a single RSS log entry

10 def __init__(self ,RSSs ,position ,heading ,second=None):

11 self.position = point3D(position.lat ,position.long ,position.alt

)

12 self.RSSs = RSSs

13 self.time = second if second != None else time.time()

14 self.heading = heading

Listing 6.12: Constructors for RSS & RSSLogItem from drone/pidrone/classes.py

The logging performed by the RSSLogger class is executed in a separate thread

from the main program thread: this means that neither slow each other down

and can run independently, whilst sharing objects. Within RSSLogger.start(),

there is a loop that runs once a second, by default, and each time at the start of

the loop a new thread is started which executes RSSLogger.log(). This means the

log times are more consistent, as opposed to each RSSLogger.log() call running

asynchronously, which may not be a constant time due to varying numbers of

devices.

The crux of the RSSLogger.log() is shown in listing 6.13, which first runs:

$ iw dev wlan0 station dump

68

This provides a list of all of the devices connected to the interface wlan0,

from which it picks out the MAC addresses of those using grep and stores them

in a list. With these, it then gets the corresponding, assigned IP address using

ip neigh, stored similarly. This is required to ping the device, which updates the

RSS value, procured with:

$ iw dev wlan0 station get aa:bb:cc:dd:ee:ff

RSSLogger.log() iterates over the MACs, running the line above for each and

storing them in a list, lines 27 - 33.

1 # get mac addresses of connected devices

2 procMAC = subprocess.Popen("iw dev wlan0 station dump | grep ’

Station ’ | awk ’{print $2}’",

3 shell=True , stdout=subprocess.PIPE , stderr=subprocess.STDOUT)

4

5 MACs = []

6

7 for line in procMAC.stdout.readlines ():

8 MACs.append(line.strip())

9

10 sorted(MACs)

11

12 # get IPs from MACs

13 ipCommand = "&&".join(["ip neigh | grep ’"+MAC+"’ | awk ’{print $1}’

" for MAC in MACs])

14

15 procIP = subprocess.Popen(ipCommand ,shell=True , stdout=subprocess.

PIPE , stderr=subprocess.STDOUT)

16

17 IPs = []

18

19 for line in procIP.stdout.readlines ():

20 IPs.append(line.strip ())

21

22 # ping connected devices (updates RSS as no inactive time)

23 pingCommand = "&&".join(["ping -c 1 "+IP for IP in IPs])

24 subprocess.Popen(pingCommand ,shell=True , stdout=subprocess.PIPE ,

stderr=subprocess.STDOUT)

25

26 # get signal levels

27 signals = []

28 sigCommand = "&&".join(["iw dev wlan0 station get ’"+MAC+"’ | grep ’

signal ’ | awk ’{print $2}’" for MAC in MACs])

29

30 procSig = subprocess.Popen(sigCommand , shell=True , stdout=

subprocess.PIPE , stderr=subprocess.STDOUT)

31

69

32 for line in procSig.stdout.readlines ():

33 signals.append(line.strip())

Listing 6.13: Excerpt from RSSLogger.log() function in drone/pidrone/RSSLogger.py

Using the data gathered above, the RSSLogger.RSSLog is updated, adding an-

other RSSLogItem object (listing 6.12) to the list. The log of all devices that

have connected to the drone is then stored in RSSLogger.devices as a dict of

deviceLogItem objects with the device’s MAC address as the key, as well as a

simplified version to send over the web, similarly stored in RSSLogger.webDevices

as webDeviceLogItem objects (listing 6.10).

6.3.5 Main Program

The main program is largely an implementation of algorithm 2 and a conversion

from the JS prototype into Python. A key section of this is the squareSearch

.trilateration() function, detailed in listing 6.14 and similar to algorithm 3,

designed in chapter 5.

The function accepts a set of points, typically computed using squareSearch.

calculateDistances() which converts the RSS values into distances. These points

pertain to multiple devices which are trilaterated with the function; however,

at least 3 points are required for trilateration, line 13.

The location for the device is then calculated using numpy (np) matrix func-

tions, line 43, to produce the location. This is based on equations 2.1 and 2.3,

restated:



r21 − r22 + x22 + y22 − x21 − y21

r21 − r23 + x23 + y23 − x21 − y21

. . .

r21 − r2N + x2N + y2N − x21 − y21


=



2 · (x2 − x1) 2 · (y2 − y1)

2 · (x3 − x1) 2 · (y3 − y1)

.

2 · (xN − x1) 2 · (yN − y1)



x
y



(2.1 restated)

D = C

x
y

⇔
x
y

 = (CT · C)−1CTD (2.3 restated)

70

1 def trilateration(self ,points):

2 """ Trilaterates the devices connected during the sqaure

3 Returns their positions in the form {MAC: pointTime ()}

4 points is a dict in the form {MAC: [signalPoint ()]} containing

the distance """

5

6 # initialise stores

7 C = {}

8 D = {}

9 locations = {}

10

11 for dev in points:

12 # loop through all the devices that connected to the drone

during the square

13 if len(points[dev]) < 4:

14 # don’t consider a device if there are not enough points to

trilaterate

15 break

16

17 # initialise the matrices for this device

18 C[dev] = []

19 D[dev] = []

20

21 i = 1

22 while i < len(points[dev]):

23 # computing the rows of the matrices

24 C[dev]. append ([

25 2 * (points[dev][i]. position.lat - points[dev][0]. position

.lat),

26 2 * (points[dev][i]. position.long - points[dev][0]. position

.long)

27])

28

29 D[dev]. append ([

30 np.square(points[dev][0]. signal) -

31 np.square(points[dev][i]. signal) +

32 np.square(points[dev][i]. position.lat) +

33 np.square(points[dev][i]. position.long) -

34 np.square(points[dev][0]. position.lat) -

35 np.square(points[dev][0]. position.long)

36])

37 i += 1

38

39 # trilaterate the points for this device using this matrix

calculation

40 # (C^T * C)^-1 * C^T * D

41 CM = np.matrix(C[dev])

42 DM = np.matrix(D[dev])

71

43 location = (CM.T * CM).I * CM.T * DM

44

45 locations[dev] = pointTime(# add to the list of locations to

return

46 location [0,0],

47 location [1,0]

48)

49

50 return locations

Listing 6.14: squareSearch.trilateration() function in drone/pidrone/classes.py

Listing 6.15 gives an example use of squareSearch.trilateration(), with the

a set of points and distances for device ’a’, represented in figure 6.16 (where

the bottom left hand corner is (0,0), each minor line represents a unit of 1 and

the blue circles represent the estimated distance away from the drone at each

point).

Figure 6.16: Trilateration example, location computed by listing 6.15

1 points = {’a’: [

2 signalPoint (15, point3D (8, 8, 0), 0), # 1

3 signalPoint (8, point3D (16, 8, 0), 0), # 2

4 signalPoint (7, point3D (24, 24, 0), 0), # 3

5 signalPoint (14, point3D (8, 24, 0), 0), # 4

72

6]}

7 s = squareSearch ()

8 aLocation = s.trilateration(points)[’a’]

Listing 6.15: Example use of squareSearch.trilateration() function

The computed aLocation is shown on figure 6.16 as a red cross, with coordi-

nates:

aLocation.lat = 21.08

aLocation.long = 16.66

6.4 Summary

The virtual prototype really cements algorithms 2 & 3, established in chapter 5;

it also helps clearly explain the intentions of the drone and how it should react

to various situations, making the project more accessible to others, objective 2.

The build of the drone gives a platform for others to work from and satisfies

key requirement M.1. The construction and was less trivial than expected in

chapter 2 and delayed the project slightly.

The main program on the drone itself has many components to it, includ-

ing the RSS logging, meeting objective 6, hosting a web server to display key

information and control the drone, objective 2, requirements M.4 - M.6 and

controlling flight in various states, objective 1.

It was not possible to implement all of algorithm 2 due to the invalid sensor

data, chapter 5, however the drone does attempt to move in a square and go to

an optimal location for all users that are connected, the average location of the

trilaterated RSS values.

73

Chapter 7

Testing

7.1 Test-Driven Development

The use of Test-Driven Development (TDD) was especially useful for verifying

the class constructors and methods in drone/classes.py, as these tests could easily

be written before development, largely based on the prototype. They were not

only testing simple data structures, but also mathematical checks on the more

complex functions in the squareSearch class with known values. An example

unit test is shown in listing 7.1, which checks the squareSearch().trilateration

function calculates the correct value with a single device and four readings at

different locations with corresponding distances to the device, similar to listing

6.15.

1 def test_squareSearch_trilateration_single_device(self):

2 s = squareSearch ()

3

4 points = {’a’: [

5 signalPoint (15, point3D (8,8,0) ,0),

6 signalPoint (8, point3D (16,8,0) ,0),

7 signalPoint (7, point3D (24 ,24,0) ,0),

8 signalPoint (14, point3D (8,24,0) ,0),

9]}

10

11 aLocation = s.trilateration(points)[’a’]

12

13 self.assertAlmostEqual(aLocation.lat ,21.08 ,2)

14 self.assertAlmostEqual(aLocation.long,16.66,2)

Listing 7.1: Example unit test

74

The tests were written in a test suite native to Python, unittest, and were

configured in Microsoft Visual Studio Code, figure 6.13, to run automatically

upon saving the file. This provided a way to perform regression testing as code

was written and instantly verify correctness of newly written code. Listing 7.2

gives an example output from when drone/classes.py was saved.

..

--

Ran 66 tests in 0.004s

OK

Listing 7.2: Output from running the classes test suite

7.2 Flight Tests

Figure 7.1 shows the set up used for the flight tests of the drone. Following the

initial flight test (Nunns 2017), figure 7.1a, which was performed in a slightly

wooded area, subsequent tests were performed at locations such as on one of

the university’s many sports pitches, which were large and clear of people &

obstacles 7.1c.

In order to prevent the drone flying too far from flight control, a large length

of string was attached to the drone 7.1g. The drone was then controlled from a

laptop, figure 7.1f, via the web dashboard, figure 7.1e.

During all testing cameras were recording, either filmed by kind individuals

(thanks to Fraser Stockley, seen in figure 7.1c), left on a tripod, filmed from

another drone, figure 7.1c, or shot using a chest-mounted wide angle camera,

figures 7.1a & 7.1e. This provided a log of events and helped track progress.

Inevitably the effect of adding the string slightly affected flight, however

it was a necessary precaution to ensure safety and prevented possible loss of

the drone. The flight tests were useful for configuring parameters of flight and

testing algorithms. The difficulty was finding a weather window long enough to

test the drone.

The testing showed the drone was capable of flight, figures 7.1g & 7.1h,

and was under control of the main program running on the Pi, with remote

supervision from the web dashboard figure 7.1e.

75

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.1: Flight tests:
Figure 7.1a: First flight test, Figure 7.1b: Test Setup from above,

Figure 7.1c: Test Setup, Figure 7.1d: Connecting the battery,
Figure 7.1e: Drone’s web dashboard, Figure 7.1f: Configuring the drone,

Figure 7.1g: Drone taking off, Figure 7.1h: Drone in flight

From the aforementioned dashboard, the trilaterated positions of the users

were displayed and the optimal state was entered. The drone performed an ap-

76

proximate square whilst logging the RSS values once per second, from which it

determined an estimate for the position of the users and moved itself appropri-

ately. Unfortunately, the effects of the strong winds prevalent during the testing

phase, and common to Loughborough, meant the precision of the movement was

minimal: an area for improvement in future work.

7.3 Summary

The TDD tests ensured the implementation behaved as expected throughout

development, meeting objective 2. The flight tests were used to assess the

success in meeting objectives and test that the code ran as expected from the

implementation, chapter 6. Further refinements of the hardware and software,

including the suggestions made in chapter 8, would make the drone’s movement

more refined and could provide better compensation for the wind.

77

Chapter 8

Recommendations

This project was the basis for a proof of concept and there are still plenty of

possibilities left unexplored.

8.1 Search Method

The current algorithm used could be bettered by the use of least squares latera-

tion, which could improve the accuracy of the lateration fourfold (Dag & Arsan

2017). For simplicity’s sake, this was not implemented on this project.

With a large collected data set from known data, a machine learning method

could be trained to produce more reliable results, drawing from the large num-

ber of data points collected by the drone. This may well greatly improve the

accuracy of the trilateration and the speed of the search algorithm.

It may be faster to choose a random direction to start searching in, as op-

posed to the rotation method - in a similar vein to a random mutation in a

genetic algorithm. This may improve the speed at which the user’s location

was determined, although would require testing to see if it were statistically

beneficial. There are various hill climbing algorithms that could be employed

to maximise the RSS from the connected devices.

8.2 Drone Fleet

With a fleet of drones, a door of opportunities is opened:

• Classic trilateration is possible with the different drones acting as the base

78

stations, figure 2.3.

• If a drone needs to land for whatever reason, another drone can dynami-

cally fills its place and service will be maintained.

• The drones can act as a swarm and cover a greater area of users.

• Mesh WiFi algorithms can be used to ensure the best signal.

• A shared database of RSS values from the devices connected to the differ-

ent drones and their predicted locations would improve trilateration and

mobility prediction.

8.3 Drone Modifications

To add internet connectivity to the drone whilst in flight, a 4G connection could

be routed through Pi’s WiFi AP. Or, if it was operating as part of a fleet it

could get its internet connection via another drone, either using WiFi or via a

separate technology, like microwaves.

An interesting addition to the drone would be the use of a 360 camera on

underside. From this, users could be identified by using image-processing algo-

rithms to recognise people in the image: this would give an approximate distance

and angle to each user. Similar objectives could be achieved by providing the

best signal to the users which it can see, because for many applications line of

sight can be assumed.

The current WiFi transceiver on the Pi is only designed for short-range

indoor connections and this project stretches its capabilities. The range of

the drone could be enlarged by fitting it with a more powerful WiFi antenna,

which may also add more fidelity to the RSS values, leading to more accurate

trilateration. Moreover, a transmitter which gave an approximate direction of

the signal (often achieved by multiple directional antennas in a single housing)

could be used for triangulation, which would reduce search times and most likely

enhance user location estimates.

Putting lights on the drone would make it easier to see in the sky and could

indicate the state of the drone, e.g. flashing red: low battery.

In general the sensors on the drone could be improved to give more precise

values and a Ultrasonic/Infrared sensor could be added to avoid obstacles.

Any additions made to the drone would impact on the weight that the motors

have to lift, which in turn would be to the detriment of flight time, if the same

79

capacity battery were used.

8.4 Web Dashboard

The web dashboard could be greatly expanded, including, but not limited to:

• Operating over WebSockets

WebSockets allow full duplex communication between the server and client,

where one can send messages to a server and receive event-driven re-

sponses, without the need for the traditional polling to the server (MDN

2018). This would mean the webStatus, listing 6.9, could be constantly

streamed over the WebSocket; likewise, the throttle commands could be

streamed as well.

This would reduce the number of HTTP requests made to the drone and

improve the stability of the web app.

• Map of Devices

A map on the web app of the connected devices may well make it more

clear what the drone’s intentions are. Either an online mapping service,

like Google Maps, could be used, or to reduce web traffic, a simple JS

canvas method, like the virtual prototype, could be used to represent the

drone and the predicted locations of the users.

• Single-Page Application

The dashboard could be converted into a much more powerful and robust

single-page web application, using a framework such as AngularJS, Vue.js

or React. These provide strong footholds into building a complex, scalable

web and mobile apps. This would make the code base simpler and more

modular.

• Device Names

A little research was made to look into retrieving the local hostnames

of devices, not only to make the web dashboard clearer (as opposed to

simply showing the device’s MAC address, figure 6.15c), but also could

be used as a heuristic for calculating the transmitter power of the device.

For example, if the connected device’s hostname was “Bob’siPhone”, then

that would likely have a weaker power than “Bob’sMacBook”. This would

of course not be entirely accurate, but a simple decision tree may aid the

estimation of the transmission power, in turn aiding the RSS trilateration.

80

• API

A standards-based API (Application Programming Interface) for the drone

would mean different apps could connect to the drone to read and write

data. This could include native apps on phones, requests from other drones

or operators. Initial moves were made towards this in this project, chapter

6.

• Secuirty

If the drone were to be used in a public setting then there should be a level

of protect added to the web dashboard, to avoid unintended access to the

controls of the drone. When connected to the internet, there should also

be strong firewalls in place to prevent others tampering with the drone.

Additionally, the hotspot itself could have increased security, with a lo-

gin screen before access to the internet was granted, including terms and

conditions.

8.5 Flight Recorder

Before the drone went into production, it would be important to fit it with a

flight recorder, also known as a black box. If there were to be an accident,

then this would aid the investigation of what was the cause. Currently, there is

a simple log kept by running the script with the following command on boot,

which stores the output of the script to a dated file:

$ sudo python -u /home/pi/drone/drone.py &>> /home/pi/drone/log/

start/start -"$(date +%Y%m%d-%H%M%S)".txt &

However, a more rigorous flight recorder could be written to run in another

thread, with thorough logging of key variables to a file. Furthermore, there

could be a separate device on the drone, independent of the Pi, dedicated to

monitoring the flight, as the drone may have failed due to an error on the Pi.

8.6 Summary

This report lays the groundwork for many exciting directions in which the work

could be taken, including various hardware and software improvements. These

would largely help the localisation of users, benefiting objective 7. This field

remains very open and is rife for developments which can add to the scope of

this project.

81

Chapter 9

Discussion

This section considers the constraints on the project and evaluates the methods

undertaken, including what has been learnt from the project.

9.1 Constraints Evaluation

One of the most difficult parts of this project was the physical, outdoor nature

of it. An ever-uncontrollable factor was the weather, which was untypically

cold, with snow multiple times during the project (Godsall 2018, Nunns 2017).

Rough conditions often stunted progress on the project, furthermore, testing

could only occur during daylight hours for safety’s sake, very limiting during

the winter period.

Finding suitable test sites was also important, not only to operate within

the law (Ministry of Defence & Military Aviation Authority 2017), but to make

sure there were no bystanders who could be injured as a result of the drone’s

experimental and erratic movements. This often involved travelling out to fields

or university sports pitches on foot with all of the equipment (development

drone, camera drone, batteries, laptop, camera, etc.). There was only one slight

mishap with a tree close to the launch site of the first test flight where a propeller

was damaged (Nunns 2018), thus, all subsequent tests were performed with

greater safety distances.

These constraints were not initially recognised to the full extent and greater

planning could have been put in to account for these issues.

A lot of the components used in this project were specialist parts shipped

from China, which delayed the build and pushed other factors back. These

82

could have been ordered sooner to allow more development time.

9.2 Technical Evaluation

I believe Python suited this project well, however it is difficult to say if the use

of the library provided by Dean (2015) expedited the progress project due to

difficulties interacting with the Flight Controller (FC). The ability to flexibly

add threads and host a web server definitely made it a suitable language for the

project and I would use it again.

The drone components used in this project varied in how well they were fit

for purpose:

• Frame

It was reasonably capable of housing the various components, but also

wasn’t overly bulky: I would most likely choose the same frame again.

• Motors & ESCs

The motors are easily powerful enough to lift the drone and a little more

- the throttle is at approximately 2
3 to hover ; these motors were a good

choice, especially as they seem to be fairly efficient too. Similarly in

relation to the model of Electronic Speed Controller (ESC), I had no

reservations.

• Flight Controller (FC)

The MultiWii Serial Protocol (MSP) is one of the more open-source meth-

ods for interacting with FCs, however other firmware options are available

and possibly greater time should have been spent researching these. Read-

ing the sensor values from the FC was more difficult than anticipated and

potentially a better solution is to attach sensors directly to the Pi and

control the ESCs directly from the Pi. This may be easier said than done,

especially if the Pi can not produce a fast enough Pulse Width Modulated

(PWM) signal to the ESCs, as well as implementing the many hidden

sub-processes that the FC performs.

9.3 Personal Development

There was a slight learning curve to writing Python, as this was the first major

project I had written in the language. As a result of this project, I have become

83

aware of its technicalities, foibles and best practices, in order to produce efficient

and understandable code.

Threads were key to this project and I had not used them before, either

academically or personally. The complexities of sharing information and call-

ing functions outside of classes in separate threads produced some interesting

challenges, but led to learning and creative solutions. Another new technology

to me was building a web server to handle requests, which furthered my un-

derstanding of the client-server model and HTTP methods. Whilst configuring

the Pi and accessing it from SSH, I increased confidence in Bash (Unix shell)

scripting.

Whilst having a passion for drones already (Nunns 2017), I had never before

built a drone, nor was I aware of a lot of the associated terminology, pro-

cesses and techniques. Constructing the drone involved more soldering than

anticipated, a skill which I have bettered greatly, with thanks to my father for

his tuition. However, this could have potentially been avoided by exploring

commercial-off-the-shelf solutions further, but it is difficult to say whether more

challenges may have been encountered interacting with that hardware.

With regard to the report, this is the largest document I’ve ever composed

and I’m pleased with the result, which has a wide range of figures, listings and

sources. Similarly, prior to starting this project I had not used LATEX before,

however am very glad I did, as it made producing graphs, adding code snippets

and maintaining versions much easier. I have since gone on to use LATEX for

other documents due to the professionality and features it provides.

9.4 Summary

The project was ambitious and multifaceted, with constraints that were not

initially clear. My naivety in the field of drones and reliance on the advice of

others in the literature review, chapter 2, possibly led to some decisions that

in retrospect could have been made differently; however, as there is limited

documentation on the exact specifications of components, they were difficult

decisions to make. Throughout the project I have learnt many skills and meth-

ods, which will aid my future academic and professional work.

84

Chapter 10

Conclusion

The ambitious main aim of this project was to develop an autonomous drone

controlled by a Raspberry Pi, which creates its own access point and flies to

provide the best coverage to the devices connected. The success of this aim is

expanded upon in the following sections, which analyse how well the objectives

and requirements were met.

10.1 Objectives Revisited

The objectives defined in the introduction, chapter 1, guided the project, prompt-

ing literary research & primary research, chapters 2 & 5 respectively, as well

as forming the basis for decisions throughout the implementation and testing,

chapters 6 & 7 respectively. This section considers whether the objectives were

covered in this report.

10.1.1 Objective 1

“Simple flight controlled by the Pi - pitch, roll, yaw and altitude

commands sent from the Pi which result in the correct movement

of the drone.”

The drone’s flight is fully controlled by the Pi, hosting its web dashboard,

figure 6.14, where the operator can remotely start and stop flight, plus control

the drone’s throttle; photos of flight tests are shown in chapter 7.

85

10.1.2 Objective 2

“Creating a project that is accessible for others to progress - clear,

concise code and a user interface that explains what the drone is

doing.”

The virtual prototype developed in chapter 6 is a great starting point for

those new to the project as it’s an interactive demo of the project and shows

the methods used by the drone to localise users. Similarly the web dashboard,

figure 6.14, gives a good overview of the drone’s current state.

The code is well commented and largely self documenting, with useful object

classes for data and methods. Furthermore, this report acts as a good starting

point for future work: notably the recommendations, chapter 8.

10.1.3 Objective 3

“Maintaining horizontal position - naturally a drone won’t hover

in a static position, due to the wind or differences in the motors:

commonly this is achieved through the use of GPS and correcting

for these problems.”

The drone was configured for stability, chapter 6, maintaining its position

from gyroscopes and GPS. However, there was still drift due to strong winds,

as discussed in chapters 7 & 9 - solutions to this problem are covered in chapter

8.

10.1.4 Objective 4

“Maintaining vertical position - similar to the maintaining horizon-

tal position issue, this can be solved by GPS (to a limited extent),

radar or barometer.”

This was more difficult than anticipated due to the erroneous data from the

barometric altimeter, chapter 5, hence manual control was implemented on the

web dashboard, figure 6.14, which also serendipitously increased safety.

10.1.5 Objective 5

“Forward obstacle avoidance - sense an object in front of the drone

and take action to avoid a collision. This may be beyond the scope

and time frame of this project.”

86

This was not covered by this project as it was deemed to be out of scope

in the requirements, chapter 4; nonetheless, this is one of the fields for further

work on the project, chapter 8.

10.1.6 Objective 6

“A functioning wireless access point with the ability to measure

connected devices signal strength - allowing the drone to make a

decision of where to move to deliver the best signal.”

This was fully implemented, with the commands used included in listing

6.13, the RSS of connected devices shown in figure 6.14, the method used for

trilateration described in chapter 2, formulated into algorithm 3 and the imple-

mented algorithm shown in listing 6.14.

10.1.7 Objective 7

“Movement based on the proximity to users connected to the access

point, involving ascertaining the location of the connected users from

trilateration and then providing the best signal.”

This was the most difficult objective and was only partially covered in this

project, this is due to the aforementioned issues covered in chapters 7 & 9. The

position was trilaterated, but the precision of the localisation and movement

was minimal and there is still further work to be pursued on this topic, chapter

8.

10.2 Requirements Revisited

Table 10.1 reexamines the requirements specified in chapter 4, considering whether

they were achieved within this project.

Priority Requirement Coverage

M.1 Must

have

A constructed drone

that is capable of flight

This was fully achieved, re-

searched in chapter 2 and its

construction & configuration

are described in chapter 6; pho-

tos of flight tests are found in

chapter 7.

87

Priority Requirement Coverage

M.2 Must

have

Drone is controlled by

Pi

This was also fully achieved,

with photos of flight tests

found in chapter 7.

M.3 Must

have

The drone maintains its

position in the horizon-

tal plane, with stable

pitch, roll and yaw

There was only some success

with this requirement - it did

not fully compensate for strong

winds, but in calm conditions it

was relatively stable.

M.4 Must

have

The drone maintains its

position in the vertical

axis, within +/- 1m

As the altimeter was found to

be unreliable, chapter 5, the

throttle was controlled manu-

ally which meant it was more

precise. This was slightly dif-

ficult during testing as the in-

creasing weight of the string

the drone was lifting affected

the throttle value required, fig-

ure 7.1g.

M.5 Must

have

A means to force the

drone to land

One can simply press the

“Land” button on the web

dashboard, figure 6.14, which

achieves this requirement.

This will work if the main pro-

gram thread is still running,

otherwise the “Kill” button

could be used.

M.6 Must

have

An emergency stop but-

ton which stops the ro-

tors spinning

One can simply press the “Kill”

button on the web dashboard,

figure 6.14, which achieves this

requirement. This attempts to

stop the program and restart

the Pi, disconnecting from the

FC and hence stopping the mo-

tors.

88

Priority Requirement Coverage

M.7 Must

have

Measuring of the bat-

tery level

Fully achieved: the low volt-

age alarm, labelled as 8 on fig-

ure 6.7, flashes red lights when

the battery is running low and

emits a loud tone when it is de-

pleted to a very low level.

M.8 Must

have

Pi acting as an AP This requirement was fully

met, with the configuration de-

scribed in chapter 6

M.9 Must

have

Log the RSS of the de-

vices connected to the

Pi’s AP

This requirement was also fully

met: the method used is laid

out in chapter 6 and the RSS of

two devices can be seen on the

web dashboard, figure 6.14.

M.10 Must

have

Trilaterate the users’ lo-

cations, based off the

RSS

Achieved with scope for im-

provement, chapter 8: the

mathematics to calculate this

is covered in chapter 2, an al-

gorithm is proposed in chapter

5 and an example use of its im-

plementation is shown in chap-

ter 6.

M.11 Must

have

Self-documenting code,

which is efficient and

well-structured

To a large extent this has been

covered, especially in the use of

Object-Oriented programming,

which makes the data types

and methods clear; however

there could be greater clarity in

the main program.

89

Priority Requirement Coverage

S.1 Should

have

The drone should make

movements based on

the trilaterated location

of multiple connected

users

Due to the difficulties de-

scribed in chapters 7 & 9, its

movements were slightly un-

clear, masked by the wind.

However, in the virtual proto-

type, a clear implementation is

presented.

C.1 Could

have

Predict the future lo-

cation of users, based

on the prior predictions

made

Achieved by the means of a

simple weighting method which

was used in the virtual proto-

type, however it was not par-

ticularly complex and was not

implemented on the drone.

W.1 Won’t

have

Obstacle avoidance, us-

ing US, IR or a similar

technology

This was not explored and a

suitable sensor was not fitted

to the drone. Further develop-

ments, including this addition,

are described in recommenda-

tions, chapter 8.

Table 10.1: Key Requirements, revisited

10.3 Project Management

The initial plan shown in figure 3.1 was subsequently updated in January, figure

10.1, to reflect the progress of the project and forecast future work, taking better

account of final year exams.

90

Figure 10.1: Updated project plan (10/1/18)

The main delays to the projects were:

• As discussed in chapter 9, the drone components took quite some time to

be shipped which slightly pushed back the start of the build, design and

implementation, as all of these relied upon the drone.

• The parts themselves took time to configure, chapter 6, and additional

work was done to attempt to rectify the poor sensor values from the Flight

Controller (FC) covered in chapter 5.

• The weather during the development and testing period was very poor

(Godsall 2018, Nunns 2017), which reduced available test weather win-

dows.

These factors meant that the assigned contingency period at the end of the

project (figure 10.1) was used more than hoped, however the project still met the

strict 30th April 2018 deadline, set out in the constraints in chapter 1. Whilst

some of these factors were partially foreseeable, they were largely out of my

hands and should be considered for future projects.

10.4 Final Conclusion

I have presented a full report into the literary background of the problem from

a wide range of sources and built a functional drone using this research.

91

From the preceding sections, the objectives and requirements were, for the

most part, achieved, and where they weren’t fully met leave strong footholds

for future additions to the project.

To summarise, the project has largely met its aims of producing a flying,

autonomous WiFi access point, which can be developed further in future.

92

Glossary

Git An open source distributed version control system (Git 2018). 60

MultiWii A general purpose software to control a multirotor RC model (Mul-

tiWii 2015a). 9, 56, 61, 62, 83, 94

WebGL Web Graphics Library native to compatible browsers. 1, 46

93

Acronyms

AP access point. 1–3, 9, 12–15, 20, 21, 58, 59, 79, 85, 87, 89, 92

ESC Electronic Speed Controller. 9, 51, 53, 83

FC Flight Controller. 5, 9, 36, 51, 53–56, 61, 63, 67, 83, 88, 91

GPS Global Positioning System. 3, 6, 13, 15, 33, 34, 36, 43, 51, 54–56, 61, 86

IR Infrared. 16, 22, 79, 90

JS JavaScript. 46, 70, 80

LiPo Lithium Polymer. 4, 57, 61

MSP MultiWii Serial Protocol. 61, 83

RC Remote Control. 61, 93

RSS Received Signal Strength. 1, 5, 10, 12–14, 21, 23–26, 30–33, 35, 36, 40–44,

46, 48–50, 63, 66–70, 73, 77–80, 87, 89

SSH Secure Shell. 24, 60, 62, 84

TDD Test-Driven Development. 5, 18, 74, 77

US Ultrasonic. 16, 22, 79, 90

94

Bibliography

Ahmed, A. (2017), ‘Driving an ESC/Brushless-Motor Using Raspberry Pi : 5

Steps’. Date accessed: 2018-01-10.

URL: http://www.instructables.com/id/Driving-an-ESCBrushless-Motor-

Using-Raspberry-Pi/

Aljadhai, A. & Znati, T. F. (2001), ‘Predictive mobility support for QoS provi-

sioning in mobile wireless environments’, IEEE Journal on Selected Areas in

Communications 19(10), 1915–1930.

B. Benchoff (2016), ‘Introducing the Raspberry Pi 3 — Hackaday’. Date

accessed: 2018-02-27.

URL: http://www.raspberry-pi-geek.com/Archive/2016/17/Raspberry-Pi-

3-Model-B-in-detail https://hackaday.com/2016/02/28/introducing-the-

raspberry-pi-3/

Balaji, S. (2012), ‘Waterfall vs V-Model vs Agile : A comparative study on

SDLC’, WATEERFALL Vs V-MODEL Vs AGILE : A COMPARATIVE

STUDY ON SDLC 2(1), 26–30.

Benkic, K., Malajner, M., Planinsic, P. & Cucej, Z. (2008), Using RSSI value

for distance estimation in wireless sensor networks based on ZigBee, in

‘Proceedings of the 15th International Conference on Systems, Signals and

Image Processing’, pp. 303–306.

URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

4604427

Bicheno, S. (2017), ‘Exclusive the facts and figures behind EE’s Glastonbury

temporary network — Telecoms.com’. Date accessed: 2018-01-09.

URL: http://telecoms.com/482875/exclusive-the-facts-and-figures-behind-

ees-glastonbury-temporary-network/

Brennan, K. (2009), A Guide to the Business Analysis Body of Knowledge, 2

95

edn, International Institute of Business Analysis.

URL: http://www.amazon.com/Guide-Business-Analysis-Knowledge-

BABOK/dp/1927584027

Cellan-Jones, R. (2011), ‘BBC - A 15 pound computer to inspire young

programmers’. Date accessed: 2017-11-28.

URL: http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a

15 computer to inspire young.html

Cellan-Jones, R. (2016), ‘Facebook’s drones - made in Britain - BBC News’.

Date accessed: 2018-02-25.

URL: http://www.bbc.co.uk/news/technology-36855168

Dag, T. & Arsan, T. (2017), ‘Received signal strength based least squares latera-

tion algorithm for indoor localization’, Computers and Electrical Engineering

66, 114–126.

URL: https://doi.org/10.1016/j.compeleceng.2017.08.014

Dean, J. (2015), ‘Python MultiWii Serial Protocol communication library’. Date

accessed: 2018-04-27.

URL: https://github.com/ke4ukz/PyMSP

DJI (2012), ‘DJI F450 Setup Demo-Frame Assembly’. Date accessed: 2018-04-

22.

URL: https://www.youtube.com/watch?v=pUTHIL Xfcc

DJI (2017a), ‘DJI MG-1S - Agricultural Wonder Drone - YouTube’. Date ac-

cessed: 2018-02-20.

URL: https://www.youtube.com/watch?v=P2YPG8PO9JU

DJI (2017b), ‘How to use DJI’s Return to Home (RTH) Safely - DJI Buying

Guides’. Date accessed: 2018-01-10.

URL: https://store.dji.com/guides/how-to-use-the-djis-return-to-home/

Eames, A. (2016), ‘Raspberry Pi 3 model B launches today’. Date accessed:

2018-04-10.

URL: http://raspi.tv/2016/raspberry-pi-3-model-b-launches-today-64-bit-

quad-a53-1-2-ghz-bcm2837

Edwards, L. (2015), ‘The internet space race is on: Google Loon vs Facebook

drones vs SpaceX satellites’. Date accessed: 2018-02-24.

URL: https://www.pocket-lint.com/gadgets/buyers-guides/131699-the-

internet-space-race-is-on-google-loon-vs-facebook-drones-vs-spacex-satellites

96

http://www.pocket-lint.com/news/131699-the-internet-space-race-is-on-

google-loon-vs-facebook-drones-vs-spacex-satell

EE (2017), ‘Glastonbury 2017: A record year of 4G sharing with more data

used than ever before’. Date accessed: 2018-01-09.

URL: http://newsroom.ee.co.uk/glastonbury-2017-a-record-year-of-4g-

sharing-with-more-data-used-than-ever-before/

Elnahrawy, E., Li, X. L. X. & Martin, R. P. (2004), ‘The limits of localization

using signal strength: a comparative study’, 2004 First Annual IEEE

Communications Society Conference on Sensor and Ad Hoc Communications

and Networks 2004 IEEE SECON 2004 00(c), 406–414.

URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

1381942

Floreano, D. & Wood, R. J. (2015), ‘Science, technology and the future of small

autonomous drones’.

Gageik, N., Benz, P. & Montenegro, S. (2015), ‘Obstacle detection and collision

avoidance for a UAV with complementary low-cost sensors’, IEEE Access

3, 599–609.

Gageik, N., Müller, T. & Montenegro, S. (2012), ‘OBSTACLE DETECTION

AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SEN-

SORS FOR AN AUTONOMOUS QUADROCOPTER’.

Gaza07 (2012), ‘The Crius All In One Pro Flight Controller (AIOP)’. Date

accessed: 2018-03-22.

URL: http://rctimer.com/download/Crius AIOP Manual MWC.pdf

Git (2018), ‘Git’. Date accessed: 2018-04-28.

URL: https://git-scm.com/

Gladstone, P. (2006), ‘Discussion about vertical GPS accuracy’. Date accessed:

2018-04-29.

URL: http://weather.gladstonefamily.net/gps elevation.html

Glaser, A. (2017), ‘DJI is running away with the drone market’. Date accessed:

2018-01-10.

URL: https://www.recode.net/2017/4/14/14690576/drone-market-share-

growth-charts-dji-forecast

Godsall, D. (2018), ‘Five days of snow in Loughborough forecast - Loughbor-

ough Echo’. Date accessed: 2018-04-28.

97

URL: https://www.loughboroughecho.net/news/local-news/five-days-snow-

loughborough-forecast-14341836

Gonzalez, D. (2017), ‘How to Build a Drone: A Beginner’s Guide — Skilled

Flyer’. Date accessed: 2018-01-10.

URL: https://skilledflyer.com/how-to-build-a-drone/

Heathman, A. (2018), ‘SpaceX satellite launch: first step in Starlink internet

project’. Date accessed: 2018-04-08.

URL: https://www.verdict.co.uk/spacex-satellite-launch-starlink/

Hern, A. (2016), ‘Raspberry Pi 3: the credit card-sized 1.2GHz PC that costs

$35’. Date accessed: 2017-11-28.

URL: https://www.theguardian.com/technology/2016/feb/29/raspberry-pi-3-

launch-computer-uk-bestselling

Highsmith, J. & Cockburn, A. (2001), ‘Agile software development: The busi-

ness of innovation’, Computer 34(9), 120–122.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=947100

HobbyKing (2018), ‘Battery Safety Guidelines’. Date accessed: 2018-04-23.

URL: https://hobbyking.com/en us/battery-safety-guidelines

Howell, J. (2015), ‘The rise of drones in movie-making’. Date accessed: 2018-

02-20.

URL: http://www.macleans.ca/culture/movies/the-rise-of-drones-in-movie-

making/

Internet.org (2016), ‘Connectivity Lab’. Date accessed: 2018-02-25.

URL: https://info.internet.org/en/story/connectivity-lab/

Janzen, D. & Saiedian, H. (2005), ‘Test-driven development concepts, taxonomy,

and future direction’, Computer 38(9), 43–50.

Joshi, D. (2017), ‘Drone Technology and Usage: Current Uses and Future Drone

Technology - Business Insider’. Date accessed: 2018-02-20.

URL: http://uk.businessinsider.com/drone-technology-uses-2017-7

Jumpy07 & Gaza07 (2013), ‘Crius AIOP V2.0 Guide for MegaPirateNG’. Date

accessed: 2018-03-20.

URL: http://www.xxl-modellbau.de/abbildungen/quadcopter/flugsteuerung/

crius aiop v2/Crius AIOP V2 0 Guide for MegaPirateNG.pdf

98

Kukreja, N., Boehm, B., Payyavula, S. S. & Padmanabhuni, S. (2012), Se-

lecting an appropriate framework for value-based requirements prioritization,

in ‘2012 20th IEEE International Requirements Engineering Conference, RE

2012 - Proceedings’, pp. 303–308.

Kulkarni, N. (2017), ‘Filming using Drones’. Date accessed: 2018-02-20.

URL: https://dronetrends.org/filming-using-drones/

le Bon, A. (2015), ‘The Drone Pi: 7 Steps (with Pictures)’. Date accessed:

2018-01-10.

URL: http://www.instructables.com/id/The-Drone-Pi/

Liang, O. (2013), ‘Quadcopter PID Explained - Oscar Liang’. Date accessed:

2018-04-29.

URL: https://oscarliang.com/quadcopter-pid-explained-tuning/

Lim, C. H., Wan, Y., Ng, B. P. & See, C. M. S. (2007), ‘A real-time indoor

WiFi localization system utilizing smart antennas’, IEEE Transactions on

Consumer Electronics 53(2), 618–622.

Liu, T., Bahl, P. & Chlamtac, I. (1998), ‘Mobility modeling, location track-

ing, and trajectory prediction in wireless ATM networks’, IEEE Journal on

Selected Areas in Communications 16(6), 922–935.

Liu, Z., Li, Z., Liu, B., Fu, X., Ioannis, R. & Ren, K. (2015), Rise of Mini-Drones,

in ‘Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing

- PAMCO ’15’, pp. 7–12.

URL: http://dl.acm.org/citation.cfm?doid=2757302.2757303

Lu, H., Li, Y., Mu, S., Wang, D., Kim, H. & Serikawa, S. (2017), ‘Mo-

tor Anomaly Detection for Unmanned Aerial Vehicles Using Reinforcement

Learning’, IEEE Internet of Things Journal p. 3.

URL: http://ieeexplore.ieee.org/document/8004441/

Lu, S. & Bharghavan, V. (1996), ‘Adaptive resource management algorithms for

indoor mobile computing environments’, ACM SIGCOMM Computer Com-

munication Review 26(4), 231–242.

URL: http://portal.acm.org/citation.cfm?doid=248157.248177

Mathuranathan, V. (2013), ‘Log Distance Path Loss or Log Normal Shadowing

Model’. Date accessed: 2018-04-17.

URL: http://www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-

normal-shadowing-model/

99

MDN (2018), ‘WebSockets - Web APIs — MDN’. Date accessed: 2018-04-27.

URL: https://developer.mozilla.org/en-US/docs/Web/API/WebSockets

API

Metageek (2017), ‘Understanding RSSI’. Date accessed: 2018-04-17.

URL: https://www.metageek.com/training/resources/understanding-

rssi.html

Meyer, D. (2018), ‘What You Need to Know About SpaceX’s Satellite Broad-

band Plans’. Date accessed: 2018-02-25.

URL: http://fortune.com/2018/02/22/spacex-starlink-satellite-broadband/

Miller, P. (2017), ‘Raspberry Pi sold over 12.5 million boards in five years’.

Date accessed: 2017-11-28.

URL: https://www.theverge.com/circuitbreaker/2017/3/17/14962170/

raspberry-pi-sales-12-5-million-five-years-beats-commodore-64

Ministry of Defence & Military Aviation Authority (2017), ‘Drones - are you

flying yours safely? (and legally?)’. Date accessed: 2018-04-23.

URL: https://www.gov.uk/government/news/drones-are-you-flying-yours-

safely-and-legally

Miranda, J., Abrishambaf, R., Gomes, T., Goncalves, P., Cabral, J., Tavares,

A. & Monteiro, J. (2013), Path loss exponent analysis in Wireless Sensor

Networks: Experimental evaluation, in ‘2013 11th IEEE International Con-

ference on Industrial Informatics (INDIN)’, number July, IEEE, pp. 54–58.

URL: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber= 6622857

http://ieeexplore.ieee.org/document/6622857/

MultiWii (2014a), ‘ESCs - MultiWii’. Date accessed: 2018-04-27.

URL: http://www.multiwii.com/wiki/index.php?title=ESCs

MultiWii (2014b), ‘MultiWii Wiki’. Date accessed: 2018-04-27.

URL: http://www.multiwii.com/wiki/

MultiWii (2015a), ‘MultiWii’. Date accessed: 2018-04-26.

URL: http://www.multiwii.com/

MultiWii (2015b), ‘multiwii - Google Code Archive’. Date accessed: 2018-04-23.

URL: https://code.google.com/archive/p/multiwii/

Nigel (2017), ‘What is Pitch, Roll and Yaw?’. Date accessed: 2018-04-30.

URL: https://emissarydrones.com/what-is-roll-pitch-and-yaw

100

Nunns, G. (2017), ‘Aerial views of snow in Loughborough’. Date accessed: 2018-

04-28.

URL: http://garethnunns.com/blog/aerial-views-of-snow-in-loughborough/

Nunns, G. (2018), ‘Maiden flight of the Pi WiFi drone’. Date accessed: 2018-

04-28.

URL: http://garethnunns.com/blog/maiden-flight-pi-wifi-drone/

Ogden, M. (2012), ‘droneduino’. Date accessed: 2017-11-28.

URL: https://gist.github.com/maxogden/4152815

Otto, M. & Thornton, J. (2017), ‘Bootstrap · The most popular HTML, CSS,

and JS library in the world.’. Date accessed: 2018-04-26.

URL: https://getbootstrap.com/

Parrot (2017), ‘Quadcopter AR Drone 2.0 GPS Edition’. Date accessed:

2017-11-28.

URL: https://www.parrot.com/uk/drones/parrot-ardrone-20-elite-

edition#parrot-ardrone-20-elite-edition

Pasztor, A. (2018), ‘SpaceX Indicates Satellite-Based Internet System Will

Take Longer Than Anticipated - WSJ’. Date accessed: 2018-02-25.

URL: https://www.wsj.com/articles/spacex-indicates-satellite-based-

internet-system-will-take-longer-than-anticipated-1519227620

PiCopter (2017), ‘PiCopter’. Date accessed: 2017-11-28.

URL: https://www.picopter.org/

Project Loon (2014), ‘Welcome all to the inaugural Golden Balloon Awards

2014!’. Date accessed: 2018-04-08.

URL: https://plus.google.com/+ProjectLoon/posts/aJVCL6dFbz9

Project Loon (2017), ‘Technology - Project Loon - Project Loon’. Date accessed:

2018-02-25.

URL: https://x.company/loon/technology/

Rajasekar, S., Philominathan, P. & Chinnathambi, V. (2013), ‘RESEARCH

METHODOLOGY’, p. 8.

URL: https://arxiv.org/pdf/physics/0601009.pdf

Rao, B., Gopi, A. G. & Maione, R. (2016), ‘The societal impact of commercial

drones’, Technology in Society 45, 84.

101

URL: https://ac.els-cdn.com/S0160791X15300828/1-s2.0-

S0160791X15300828-main.pdf? tid=839e7dba-15dd-11e8-808b-

00000aacb362&acdnat=1519090366 c5b9bf9fe28558d40c2936d0ac55311e

Rouse, M., Earls, A., Shea, S. & Wigmore, I. (2016), ‘What is drone (unmanned

aerial vehicle, UAV)?’. Date accessed: 2017-11-27.

URL: http://internetofthingsagenda.techtarget.com/definition/drone

Rozyyev, A., Hasbullah, H. & Subhan, F. (2011), ‘Indoor Child Tracking in

Wireless Sensor Network using Fuzzy Logic Technique’.

Rufus, D. (2016), ‘How to Build a Drone - A Definitive Guide For Newbies’.

Date accessed: 2018-01-10.

URL: http://beginnerflyer.com/build-a-drone/

Samsung Group (2017), ‘Galaxy Note7: What We Discovered’. Date accessed:

2018-04-26.

URL: https://news.samsung.com/global/infographic-galaxy-note7-what-we-

discovered

Soh, W.-S. & Kim, H. S. (2003), ‘QoS provisioning in cellular networks based on

mobility prediction techniques’, IEEE Communications Magazine 41(1), 1.

URL: http://ieeexplore.ieee.org/document/1166661/

Soh, W. S. & Kim, H. S. (2004), Dynamic bandwidth reservation in cellular

networks using road topology based mobility predictions, in ‘Proceedings -

IEEE INFOCOM’, Vol. 4, IEEE, pp. 2766–2777.

URL: http://ieeexplore.ieee.org/document/1354694/

Song, L., Deshpande, U., Kozat, U. C., Kotz, D. & Jain, R. (2006), Pre-

dictability of WLAN mobility and its effects on bandwidth provisioning, in

‘Proceedings - IEEE INFOCOM’, p. 2.

URL: http://softlab-pro-web.technion.ac.il/projects/TrackMe/doc/

22 02.PDF

Tahat, A., Kaddoum, G., Yousefi, S., Valaee, S. & Gagnon, F. (2016), ‘A Look

at the Recent Wireless Positioning Techniques with a Focus on Algorithms

for Moving Receivers’, IEEE Access 4, 6652–6680.

Thomas, S. (2015), ‘Drone On’, Rail Profressional Magazine 94(May), 81–82.

URL: http://heinonline.org/HOL/Page?handle=hein.journals/fora94&id=

646&div=&collection= http://issuu.com/railpro/docs/may issue rail pro/80

102

Tiwari, A. & Dixit, A. (2015), ‘Unmanned Aerial Vehicle and Geospatial Tech-

nology Pushing the Limits of Development’, American Journal of Engineering

Research (AJER) 4(01), 16–21.

URL: www.ajer.org

Torres-González, A., Capitán, J., Cunha, R., Ollero, A. & Mademlis, I. (2017),

ROBOT 2017 : Third Iberian Robotics Conference. Volume 1, Springer,

p. 337.

URL: https://books.google.co.uk/books?hl=en&lr=&id=Cyg-DwAAQBAJ

U.S. Air Force (2017), ‘GPS Accuracy’. Date accessed: 2018-04-12.

URL: https://www.gps.gov/systems/gps/performance/accuracy/

Valente, J., Sanz, D., Barrientos, A., del Cerro, J., Ribeiro, Á. & Rossi, C.

(2011), ‘An air-ground wireless sensor network for crop monitoring’, Sensors

11(6), 6088–6108.

URL: http://www.mdpi.com/1424-8220/11/6/6088/

Vargas, A. (2017), ‘MultiWii Serial Protocol (MSP) API’. Date accessed: 2018-

04-27.

URL: https://github.com/alduxvm/pyMultiWii

Vasisht, D., Kumar, S. & Katabi, D. (2016), ‘Decimeter-Level Localization

with a Single WiFi Access Point’, Nsdi 2016 (ii), 165–178.

URL: https://www.usenix.org/conference/nsdi16/technical-

sessions/presentation/vasisht

Wagster, J. & Rose, M. (2012), ‘Obstacle Avoidance System for a Quadrotor

UAV’, Infotech@ Aerospace 2012 p. 10.

URL: http://arc.aiaa.org/doi/pdf/10.2514/6.2012-2548

Waters, R. (2017), ‘Google parent shifts stance on internet balloons’. Date

accessed: 2018-02-25.

URL: https://www.ft.com/content/b8066f88-f485-11e6-8758-6876151821a6

Webster, J. & Watson, R. (2002), ‘ANALYZING THE PAST TO PREPARE

FOR THE FUTURE: WRITING A LITERATURE REVIEW Analyzing the

past to prepare for the future’, Management Information Systems Quarterly

26(2).

URL: http://www.jstor.org/stable/4132319 http://about.jstor.org/terms

http://aisel.aisnet.org/misq/vol26/iss2/3/

103

Wu, Y., Chou, P. a., Zhang, Q., Jain, K., Zhu, W. & Kung, S.-Y. (2005),

‘Network Planning in Wireless Ad-hoc Networks : A Cross-Layer Approach’,

IEEE Journal on Selected Areas in Communications 23(1), 136–150.

Xu, J., Liu, W., Lang, F., Zhang, Y. & Wang, C. (2010), ‘Distance Measurement

Model Based on RSSI in WSN’, Wireless Sensor Network 02(08), 606–611.

URL: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/wsn.2010.28072

Zhao, Y. (2000), ‘Mobile Phone Location Determination and Its Impact on

Intelligent Transportation Systems’, IEEE Transactions on Intelligent Trans-

portation Systems 1(1), 55–64.

104

	Introduction
	Scope
	Purpose
	Background
	Applications

	Motivation
	Aims
	Objectives
	Constraints
	Time
	Cost

	Report Outline

	State of the Art
	Basic Definitions
	Drone
	Raspberry Pi

	Drones as a Service
	Hardware
	Commercial Drone
	Constructing a Drone

	Software
	Localisation
	AP Signal Levels
	Mobility Prediction
	Location Optimisation
	Collision Avoidance

	Summary

	Methodology
	Project Management
	Project Plan
	Software Development Life Cycle
	MoSCoW

	Research Methodology

	Requirements
	Design
	WiFi Research
	Test Setup
	Logging
	Range Tests
	Directional Tests

	Drone Sensor Research
	Test Setup
	GPS Tests
	Altimeter Tests
	Compass Tests

	Algorithm
	General Principle
	States
	Finding the Optimal Location

	Summary

	Implementation
	Prototype
	Technology
	Overview
	Simulating RSS
	Data Structures
	Findings

	Drone
	Components
	Build
	Configuring Components
	Safety
	Pi Configuration

	Program
	Development Environment
	Interacting with Flight Controller
	Web Server
	Logging RSS
	Main Program

	Summary

	Testing
	Test-Driven Development
	Flight Tests
	Summary

	Recommendations
	Search Method
	Drone Fleet
	Drone Modifications
	Web Dashboard
	Flight Recorder
	Summary

	Discussion
	Constraints Evaluation
	Technical Evaluation
	Personal Development
	Summary

	Conclusion
	Objectives Revisited
	Objective 1
	Objective 2
	Objective 3
	Objective 4
	Objective 5
	Objective 6
	Objective 7

	Requirements Revisited
	Project Management
	Final Conclusion

	Glossary
	Acronyms
	Bibliography

